Forschungsinteressen

  • Operatortheorie, insbesondere Toeplitzoperatoren auf Räumen mit reproduzierendem Kern
  • Quantenharmonische Analysis
  • Operatoralgebren
  • Spektraltheorie

Publikationen und Preprints

  1. R. Fulsche, M. Nursultanov, G. Rozenblum: Negative eigenvalue estimates for the 1D Schrödinger operator with measure-potential, preprint available at arXiv:2408.05980
  2. W. Bauer, R. Fulsche, M. Rodriguez Rodriguez: Operators in the Fock-Toeplitz algebra, preprint available at arXiv:2405.20792
  3. R. Fulsche: Essential positivity for Toeplitz operators on the Fock space, Integr. Equ. Oper. Theory 96 (2024), no. 3, article number 21, https://doi.org/10.1007/s00020-024-02770-x
  4. R. Fulsche, F. Luef, R. F. Werner: Wiener's Tauberian theorem in classical and quantum harmonic analysis,  preprint available at arXiv:2405.08678
  5. R. Fulsche: A Wiener algebra for Fock space operators, preprint available at arXiv:2311.11859
  6. R. Fulsche, R. Hagger: Quantum harmonic analysis for polyanalytic Fock spaces, preprint available at arXiv:2308.11292
  7. R. Fulsche, N. Galke: Quantum Harmonic Analysis on locally compact abelian groups, preprint available at arXiv:2308.02078
  8. R. Fulsche, M. Rodriguez Rodriguez: Commutative G-invariant Toeplitz C* algebras on the Fock space and their Gelfand theory through Quantum Harmonic Analysis, to appear in J. Operator Theory, preprint available at arXiv:2307.15632
  9. R. Fulsche, L. van Luijk: A simple criterion for essential self-adjointness of Weyl pseudodifferential operators, preprint available at arXiv:2304.07153
  10. S. M. Berge, E. Berge, R. Fulsche: A Quantum Harmonic Analysis Approach to Segal Algebras, Integr. Equ. Oper. Theory 96 (2024), no. 3, article number 20, https://doi.org/10.1007/s00020-024-02771-w
  11. W. Bauer, R. Fulsche: Resolvent algebra in Fock-Bargmann representation, In: Ambily, A.A., Kiran Kumar, V.B. (eds) Semigroups, Algebras and Operator Theory. ICSAOT 2022. Springer Proceedings in Mathematics & Statistics, vol 436. Springer, Singapore, https://doi.org/10.1007/978-981-99-6349-2_12
  12. R. Fulsche: Toeplitz operators on non-reflexive Fock spaces, Rev. Mat. Iberoam. 40 (2024), no. 3, 1115–1148, https://doi.org/10.4171/rmi/1459
  13. R. Fulsche, M. Nursultanov: Spectral Theory for Sturm-Liouville operators with measure potentials through Otelbaev's function, J. Math. Phys. 63, 012101 (2022), https://doi.org/10.1063/5.0062669
  14. R. Fulsche: Correspondence theory on p-Fock spaces with applications to Toeplitz algebras, J. Funct. Anal. 279 (2020), no. 7, https://doi.org/10.1016/j.jfa.2020.108661
  15. W. Bauer, R. Fulsche: Berger-Coburn theorem, localized operators, and the Toeplitz algebra, In: Bauer W., Duduchava R., Grudsky S., Kaashoek M. (eds) Operator Algebras, Toeplitz Operators and Related Topics. Operator Theory: Advances and Applications, vol 279. Birkhäuser, https://doi.org/10.1007/978-3-030-44651-2_8
  16. R. Fulsche: Toeplitz Operators on Pluriharmonic Function Spaces: Deformation Quantization and Spectral Theory, Integr. Equ. Oper. Theory (2019) 91:40, https://doi.org/10.1007/s00020-019-2538-y
  17. R. Fulsche, R. Hagger: Fredholmness of Toeplitz operators on the Fock space, Complex Anal. Oper. Theory 13 (2019), no. 2, 375-403, https://doi.org/10.1007/s11785-018-0803-8
  18. J. F. Brasche, R. Fulsche: Approximation of eigenvalues of Schrödinger operators, Nanosystems: Phys. Chem. Math. 8 (2018), no. 2, 145-161, https://doi.org/10.17586/2220-8054-2018-9-2-145-161