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5. The Heat Kernel

5.a. The heat operator.

5.1. The Dirichlet problem for the Laplace-Beltrami operator. We so far have worked
with the Dirichlet Laplacian on a bounded domain in Rn. We shall now also consider the case,
where (⌦, g) is a smooth compact Riemannian manifold with boundary. In local coordinates we
then define the Laplace-Beltrami operator, also denoted by �,

�u(x) = divru =
p
det g(x)

�1X
@xj

(gjk(x)
p
det g(x)@xk

u)(x).

Here one writes the metric locally as a matrix g = gjk and (gjk) is the inverse matrix. This
expression is in fact independent of the choice of coordinates. It defines a strongly elliptic second
order differential operator in the interior of ⌦. We additionally impose Dirichlet boundary
conditions at the boundary. Then we have

h�u, viL2(⌦) = hru,r viL2(⌦)

for u, v 2 C1(⌦) with u = 0 on @⌦. The right hand side extends to a closed semibounded form
on W 1,2

0 (⌦). We can therefore define ��D as a selfadjoint operator on L2(⌦) via Theorem 2.4.
As before, the domain is W 2,2(⌦) \ W 1,2

0 (⌦). It is not very difficult (the proof is basically as
before) to see that ��D is invertible and (��D)�1 is a compact operator on L2(⌦). Therefore
��D has a complete set of eigenfunctions {ek : k 2 N} for eigenvalues 0 < �1  �2  . . . ! 1.
It is also not hard to see that �k � ck2/n for a suitable constant c. In fact one can show that
Weyl’s formula also holds for this case - including the case when @⌦ = ;.

5.2. The heat equation. The heat equation is the partial differential equation

@tu��Du = 0, u(0) = u0.(1)

Here, u is considered a function of the variables t � 0 and x 2 ⌦, where ⌦ is a bounded domain
in Rn or a manifold with boundary, ��D is the Dirichlet Laplacian, and u0 is an initial value,
say, u0 2 L2(⌦). Formally, the solution of the above equation is given by

u(t) = exp(t�D)u0,

and indeed this makes sense, as we shall see.

5.3. The heat kernel. Let ⌦ be a bounded domain in Rn or a compact manifold with
boundary. Denote by {(ek,�k) : k 2 N} the set of eigenfunctions and eigenvalues, repeated
according to multiplicity. We define the operator exp(t�D) by

exp(t�D)u =
1X

k=1

exp(�t�k)hu, ekiek.

In view of the fact that �k � ck2/n the sum converges in L2(⌦).
Moreover, u(t, x) = exp(t�D)u0(x) solves the heat equation. In fact,

@tu(t, x) =
1X

k=1

�k exp(�t�k)hu0, ekiek = �Du(t, x), u(0, x) =
1X

k=1

hu0, ekiek = u0.

For t > 0 the operator exp(t�D) is an integral operator with the integral kernel

kt =
1X

k=1

exp(�t�k)ek ⌦ ek.

Since ek ⌦ ek has norm 1 in L2(⌦⇥ ⌦), the sum converges in L2(⌦⇥ ⌦).
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5.4. Sobolev spaces on Rn. For s 2 R, the space Hs(Rn) consists of all distributions u such
that ⇠ 7! (1 + |⇠|2)s/2û(⇠) is in L2. Here û is the Fourier transform of u.
For s 2 N0 this is equivalent to asking that u and its derivatives up to order s are in L2. In
particular for s = 2, we have

u 2 H2(Rn) , (1 + |⇠|2)û(⇠) 2 L2(Rn) , (1��)u 2 L2(Rn).

An important theorem is the Sobolev embedding theorem: Hs(Rn) ,! Ck whenever s > k+n/2.

5.5. Theorem. Let ⌦ be a bounded domain in Rn or a smooth compact Riemannian manifold
with boundary.

(a) The eigenfunctions ek of ��D are smooth in the interior ⌦� of ⌦.
(b) For t > 0 the function (t, x, y) 7! kt(x, y) is smooth in (0, 1)⇥ ⌦� ⇥ ⌦�.

Proof. For simplicity assume ⌦ ⇢ Rn; the proof for manifolds works similarly.
(a) The fact that ek 2 L2(⌦) and ��Dek = �kek 2 L2(⌦) implies by iteration that, for every
' 2 C1

c (⌦) and every m 2 N, we have

(1��)m('ek) 2 L2(Rn).

Taking the Fourier transform, (1+ |⇠|2)m('ek)^ 2 L2(Rn), or, equivalently, 'ek 2 H2m(Rn). By
Sobolev’s embedding theorem, 'ek 2 C1(Rn). Hence ek is smooth in ⌦.
(b) We have

(1� i@t)
l(1��D,x)

m(1��D,y)
m

0
kt(x, y) =

1X

k=1

(1 + i�k)
l(1 + �k)

m(1 + �k)
m

0
e�t�kek(x)ek(y).

We see that the sum of the L2-norms of these derivatives converges, so that the above function
is in L2. Just as in the proof of (a) we obtain the smoothness. ⇤

5.6. Remark. If the boundary is smooth, one can show the eigenfunctions are smooth up to
the boundary (see Evans’ book). It is hard to say what happens at the boundary, if that it not
smooth.
In the sequel we will therefore work on a smooth manifold with boundary, where the
boundary might actually be empty.

5.b. The heat kernel on closed manifolds. Let (⌦, g) be a closed3 Riemannian manifold.
Since @⌦ = ;, we obtain from Theorem 5.6.

5.7. Corollary. The heat kernel on a closed manifold ⌦ is a smooth function on (0, 1)⇥⌦⇥⌦.

5.8. Lemma. A function u on ⌦ belongs to C1(⌦) if and only if its sequence of Fourier
coefficients is rapidly decreasing.

Proof. We have u 2 C1(⌦) if and only if (1 ��)mu 2 L2(⌦) for every k 2 N. This in turn is
equivalent to the fact that

(1 + �k)
mhu, eki 2 `2(N) for all m.

As �k ⇠ k2/n, this shows the assertion. ⇤

5.9. Proposition. Let u 2 C1(⌦). Then et�u ! u in all (spacial) derivatives as t ! 0+.

3closed = compact and no boundary
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Proof. We have

(1��)met�u =
1X

k=1

(1 + �k)
me�t�khu, ekiek.

As the Fourier coefficients of u are rapidly decreasing, we can take the limit t ! 0+ under the
summation and see that (1��)met�u ! (1��)mu 2 H2m(⌦) for all m. ⇤
5.10. Lemma. The heat kernel kt(x, y), considered as a smooth function on (0, 1)⇥ ⌦⇥ ⌦ is
uniquely determined by the facts that
(i) (1��)kt(x, y) = 0 for all t > 0, x, y 2 ⌦, and
(ii) For f 2 C1(⌦), u(t, x) :=

R
kt(·, y)f(y) dS converges to f in C(⌦) as t ! 0+.

Proof. We have seen that the heat kernel satisfies these properties.
Conversely, given f 2 C1(⌦), any function lt with properties (i) and (ii) furnishes a function
u = u(t, x) which is smooth for t > 0 with @tu = �u and limt!0 u(t, x) = f(x), i.e. a solution to
the heat equation with initial value f . As the solution is unique (a fact we will not show here),
lt = kt. ⇤
5.11. The heat kernel on Rn. We recall that on Rn, the heat kernel is of the form

kt(x, y) = (4⇡t)�n/2 exp
⇣ |x� y|2

4t

⌘
.

Considering an initial heat distribution localized near a point, we may expect that, for small t,
the heat kernel will approximately look this way. Following Grieser [3] we will show the theorem,
below. It concerns the values of the heat kernel on the diagonal. It also holds in a neighborhood
of it, but for later purposes, the diagonal values are the interesting ones:

5.12. Theorem. (Minakshisumdaram and Pleijel, 1948) On a smooth Riemannian manifold
the heat kernel, restricted to the diagonal in ⌦⇥ ⌦, has an asymptotic expansion

kt(x, x) ⇠ t�n/2
�
a0(x) + a1(x)t+ a2(x)t

2 . . .
�

as t ! 0+.

The aj are smooth functions on ⌦ and aj(x) is determined by the Riemannian metric and its
derivatives in x.
The asymptotic expansion holds uniformly in x and therefore can be integrated. In view of the
fact that Z

⌦
kt(x, x) dS =

Z

⌦

X
e�t�k |ek(x)|2 dS =

X
e�t�k

Z

⌦
|ek(x)|2 dS =

X
e�t�k

we obtain
1X

k=1

e�t�k ⇠ t�n/2
1X

j=0

↵jt
j , with ↵j =

Z

⌦
aj(x) dS.

5.13. Outline. For the proof we follow Grieser [3], where also missing details can be found.
We will construct a sequence of function Kj = Kj(t, x, y) on (0,1)⇥ ⌦⇥ ⌦ that ‘converges to
the heat kernel in a certain sense which we will specify, below. We note two important features
of the heat kernel on Rn:
(i) it has the prefactor (4⇡t)�n/2

(ii) It is a smooth function of the variable X = |x � y|/
p
t, t > 0, exponentially decaying as

X ! 1.
We therefore introduce C1([0,1)1/2) as the space of all functions f on [0,1) that are smooth
as functions of

p
t, i.e. there exists a g 2 C1([0,1)) such that f(s2) = g(s). We will similarly

write C1([0,1)1/2 ⇥ ⌦⇥ ⌦), etc.
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5.14. Definition. Let ↵  0. By  ↵

H
, we denote the space of all functions A 2 C1((0,1)⇥⌦2)

such that

(i) If x 6= y, then @�

t,x,y
A(t, x, y) = O(t1) for all � as t ! 0+ (off diagonal decay).

(ii) For every x 2 ⌦, there exists a local coordinate system U ⇢ Rn for x and a function
Ã 2 C1([0,1)1/2 ⇥ Rn ⇥ U) such that

A(t, x, y) = t�
n+2
2 �↵Ã

⇣
t,
x� yp

t
, y
⌘
, x, y 2 U.(1)

(we are using local coordinates on the right hand side.) In addition we require Ã to be
rapidly decreasing in the second variable, i.e.

@�

t,X,y
Ã(t,X, y) = O(|X|�1) as |X| ! 1,(2)

uniformly in t and y, t bounded.

5.15. Remark.

(a) In Definition 5.14, Ã is not uniquely defined. In fact, for fixed t > 0, X = (x�y)/
p
t takes

values in a compact set. However, for |x� y| = X
p
t small, condition (ii) lets us conclude

that

Ã(t,X, y) = t(n+2)/2+↵A(t,X
p
t+ y, y)(1)

(b) (ii) implies (i) if both x and y belong to U .
(c) The choice of ↵ is not well motivated at this point. It measures the flatness of A in t for

x = y as t ! 0+; it will become clear later on.
(d) Since Ã is required to be smooth as a function of

p
t up to t = 0, we have  ↵�1/2

H
⇢  ↵

H
.

5.16. Definition. Given A 2  ↵

H
, we define the function �↵(A) on T⌦ as follows: Let X 2 Ty⌦

be a tangent vector and let � : (�", ") ! ⌦ be a curve with �(0) = y and �0(0) = X. We then
let

�↵(A)(X, y) = lim
t!0+

t(n+2)/+↵A(t, �(
p
t), y).

In local coordinates, for X
p
t small (here X is a tangent vector at y in Rn), this is equivalent to

setting
�↵(A)(X, y) = Ã(0, X, y)

with the function Ã from 5.14(2).
The function �↵(A) gives the leading term in the expansion of A.
This is a smooth function on TM ; moreover, it decays rapidly in the fiber direction. We write
�↵(A) 2 C1

S (T⌦).

5.17. Lemma.

(a) Let A 2  ↵

H
. Then �↵(A) = 0 if and only if A 2  ↵�1/2

H
(A).

(b) For every function F 2 C1
S (T⌦) there exists an A 2  ↵

H
having F as its leading term.

In other words we have a short exact sequence

0 !  ↵�1/2
H

(⌦) !  ↵

H(⌦) ! C1
S (T⌦) ! 0.

Proof. (a) Clearly, �↵(A) = 0 if A 2  ↵�1/2
H

(A). Conversely, the fact that Ã is smooth as a
function of

p
t implies that  �

H
⇢  ↵

H
only if � = ↵� k/2 for some k 2 N0. This shows (a).

(b) Define A by 5.15(1) for a function Ã with Ã(0, X, y) = �↵(A). ⇤
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5.18. Definition. We define the ⇤-product of two smooth functions A, B on (0,1)⇥ ⌦2 by

(A ⇤B)(t, x, y) =

Z
t

0

Z

⌦
A(t� s, x, z)B(s, z, y) dS(z)ds,

provided the integral makes sense.

5.19. Proposition. Let A 2  ↵

H
, B 2  �

H
, ↵,� < 0. Then A ⇤ B is defined and furnishes an

element in  ↵+�

H
.

In addition, we have he formula

�↵+�(A ⇤B)(X, y) =

Z 1

0

Z

Rn

(1� �)(n+2)/2�↵�(n+2)/2���↵

⇣ X � Zp
1� �

⌘
��

⇣ Zp
�

⌘
dZd�.

Proof. Computation. ⇤
5.20. Proposition. Let A 2  ↵

H
for ↵  �1. Then (@t ��)A 2  ↵+1

H
and

�↵+1(@t ��)A)(X, y) =


�n+ 2

2
� ↵� 1

2
X@X ��0,y

X

�
�↵(A)(X, y).

Here X@X =
P

n

j=1Xj@Xj
and �0,y

X
=

P
jk
gjk@Xj

@Xk
.

Proof. Write A(t, x, y) = t�lÃ(t, (x� y)/
p
t, y) with l = (n+ 2)/2 + ↵. Then

@tA(t, x, y) = �lt�l�1Ã(t, (x� y)/
p
t, y)

�t�1@XÃ(t, (x� y)/
p
t)
1

2

x� y

t3/2
+ t�l@tÃ(t, (x� y)/

p
t, y)

= t�l�1

✓
�l � 1

2
X@X

◆
Ã(t, (x� y)/

p
t, y) +R(t, x, y),

where R 2  ↵+1/2
H

. In view of the fact that @xj
(t�lA) = t�l�1/2@Xj

Ã we find

�xA(t, x, y) = t�l�1
X

jk

gjk(x)@Xj
@Xk

Ã+ t�l�1/2
nX

j=1

bj(x)@Xj
Ã

= t�l�1
X

jk

gjk(y)@Xj
Ã+R2

with R2 2  ↵+1/2
H

. Note that we have changed the argument of gjk. In fact, a Taylor expansion
shows that gjk(x) = gjk(y) + hjk(x, y)(x� y) with (n⇥ n)-matrix valued functions hjk, so that
we may write

gjk(x)� gjk(y) =
p
thjk(y +X

p
t, y)X

The term R2 consists of the term on the right hand side plus the sum of the terms bj(x)@Xj
Ã =

bj(y + X
p
t)@Xj

Ã and therefore is an element of  ↵+1/2
H

. In particular, R1 and R2 do not
contribute to �↵(A). ⇤

We will next see what happens at t = 0. The first result:

5.21. Lemma. (a) Let A 2  �1
H

and f 2 C1(⌦), Then

Af(t, x) =

Z

⌦
A(t, x, y)f(y) dS(y)

defines an element of C1([0,1)1/2 ⇥ ⌦) and

Af(0, x) = f(x)

Z

Tx⌦
��1(A)(X,x) dX.
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(b) If A 2  ↵

H
(⌦) for some ↵ < �1, then Af(0, x) = 0.

Proof. In local coordinates in Rn we compute
Z

A(t, x, y)f(y) dy = t�(n+2)/2�↵Ã(t, (x� y)/
p
t, y) dy

X=(x�y)/
p
t

= t�1�↵

Z
Ã(t,X, x�X

p
t)f(x�X

p
t) dX.

It is clear that this defines a smooth function of
p
t and x for ↵  �1 and that Af vanishes for

t = 0 whenever ↵ < �1. For ↵ = �1, we have

Af(0, x) =

Z
Ã(0, X, x)f(x) dz = f(x)

Z
��1(A)(X,x) dX.

⇤

Now we will see how to construct an exact solution.

5.22. Lemma. Suppose that K1 2  �1
H

satisfies

(@t ��x)K1(t, x, y) = R(t, x, y) 2  �1+1/2
H

(⌦) and lim
t!0+

K1(t, x, y) = �x(y)(1)

and that S 2  �

H
for � < 0. Then

(@t ��x)(K1 ⇤ S) = S +R ⇤ S and lim
t!0+

K1 ⇤ S = 0.

Proof. By definition

(K1 ⇤ S)(t, x, y) =
Z

t

0

Z

⌦
K1(t� s, x, z)S(s, z, y)dzdy.

Since @t
R
t

0 h(t, s)ds = h(t, t) +
R
t

0 @th(t, s) ds for continuous h, the first assertion is immediate
(the convergence of the integral is seen as in the proof of Lemma 5.21). The second assertion
follows from Lemma 5.21(b) together with the fact that K1 ⇤ S 2  �1+�

H
. ⇤

5.23. Lemma. Assume that 5.22(1) holds with R 2  �1/2
H

. Define

K =
1X

j=0

(�1)jK1 ⇤R⇤j = K1 +K1 ⇤R+K1 ⇤R ⇤R+ . . . .

Then (a) The series converges4 in C1([0,1)⇥ ⌦⇥ ⌦).
(b) K satisfies 5.22(1) with R = 0, i.e. K solves the heat equation in the distributional sense.
(c) The series gives an asymptotic expansion in that K1 ⇤Rj⇤ 2  �1�j/2

H
.

Proof. (a) Let j � n/2+ 1 and S = Rj⇤ 2  �j/2
H

. In particular, S is continuous in t up to t = 0.
Then

Sm⇤(t, x, y) =

Z

0t1...tm�1t

Z

⌦m�1
S(t� t1, x, z1)S(t1 � t2, z1, z2) . . .

⇥S(tm�1, zm�1, y)dz1 . . . dzm�1dt1 . . . dtm�1

Let us show that this integral converges for (t, x, y) 2 M = [0, T ]⇥⌦2 as m ! 1 together with
all derivatives for all T > 0. Suppose first we have no derivatives. Let C = maxM |S(t, x, y)|.

4It is not a function in C1([0,1)⇥ ⌦⇥ ⌦), however, since the first terms are not in this space



33

The integral with respect to t is over an m� 1-simplex of size T . Its volume is Tm�1/(m� 1)!.
We therefore estimate

max
M

|Sm⇤(t, x, y)|  Tm�1(vol⌦)m�1Cm

(m� 1)!
.

Since |R(j+k)⇤| is bounded on M for k = 0, 1, . . . , j, say by C 0, we obtain a corresponding bound
also for maxM |R(jm+k)⇤|. Hence the series converges uniformly.
Using the fact that functions in A 2  ↵

H
are of the form A(t, x, y) = t�(n+2)/2�↵Ã(t, (x�y)/

p
t, y)

for Ã smooth in
p
t, we find a corresponding estimate also for the derivatives in t, x and y (we

have to take j larger as the number of derivatives increases). Hence the series converges in C1

(note, however, that the full series is not in C1 since the first terms are not due to the factor
t�n/2 in K1).
(b) The fact that K1 satisfies 5.22(1) together with Lemma 5.22 implies by iteration that (@t �
�x)K1 = R and (@t ��x)(K1 ⇤Rj⇤) = Rj⇤ +R(j+1)⇤ for j � 1. We therefore have

(@t ��x)
⇣ kX

j=0

(�1)jK1 ⇤R⇤j
⌘
= R(k+1)⇤.

According to (a) the series converges to zero.
(c) follows from the fact that  ↵

H
⇤ �

H
✓  ↵+�

H
, see Proposition 5.19. ⇤

5.24. Lemma. In local coordinates on ⌦ define

K1(t, x, y) = (4⇡t)�n/2 exp
⇣ |x� y|2

g(y)

4t

⌘
,

where |x|2
g(y) =

P
n

j,k=1 gjk(y)xjxk. Then K1 satisfies the assumptions of Lemma 5.22 and there-
fore furnishes the heat kernel via the above process.

Proof. Write K(t, x, y) = t�n/2(4⇡)�n/2 exp
⇣P

gjk(y)XjXk/4
⌘
. Hence K1 2  �1

H
(⌦). A com-

putation analogous to that in 5.20 shows that �0((@t ��)K1) = 0 and therefore (@t ��x)K1 2
 �1/2

H
. Moreover, for f 2 C1(⌦),

lim
t!0+

Z

⌦
K1(t, x, y)f(y)dS(y) = f(x)

Z

Tx⌦
��1K1(X,x) dX

= (4⇡)�n/2
Z

Tx⌦
exp

⇣
|X|2

g(x)/4
⌘
dXf(x) = f(x),

since
R
R exp(�t2) dt =

p
⇡. Hence limK1(t, x, y) = �x(y). ⇤

5.25. Proposition. On closed manifolds, only integer powers appear in the heat kernel
expansion at the diagonal x = y.

Proof. Let L 2  ↵

H
(⌦), for some ↵ 2 �N0/2. Write L(t, x, y) = t�(n+2)/2�↵L̃(t,X, y), where

X = x�yp
t

and L̃ is assumed to be a smooth function of
p
t, so that it has a Taylor expansion

L̃(t,X, y) ⇠
1X

j=0

kj(X, y)tj/2.

Call L even, if kj is even in X for j/2 + ↵ integer and odd in X if j/2 + ↵ is non-integer. One
notices

• @t and @xj
and multiplication by smooth functions of x map even functions to even

functions
• The convolution of even functions is even.
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Next we observe that the function K1 2  �1
H

in Lemma 5.24 is even and thus the construction
shows that the heat kernel is even. Since odd functions vanish at the origin, evaluation at t = 0
shows that kj(0, y) = 0 for j odd. ⇤
5.26. Theorem. The leading coefficient a0(x) of the heat trace expansion in Theorem 5.12 is
constant (4⇡)�n/2. Hence ↵0 =

R
⌦ a0(x) dS = (4⇡)�n/2vol⌦.

Proof. According to Lemma 5.23 and Lemma 5.21 only the term K1 contributes to the zero order
coefficient. It is (4⇡)�n/2 exp(0) = (4⇡)�n/2. ⇤

5.c. The heat kernel on manifolds with boundary. In the case of manifolds with boundary
we have the following analog of Theorem 5.12:

5.27. Theorem. (Minakshisundaram and Pleijel) Let (⌦, g) be a smooth compact manifold
with boundary. Then there exists a unique Dirichlet heat kernel, i.e. a function K 2 C1((0,1)⇥
⌦⇥ ⌦) with the following properties:
(i) (@t ��)K(t, x, y) = 0, t > 0, x, y 2 ⌦,
(ii) K(t, x, y) = 0 whenever x 2 @⌦,
(iii) limt!0+ K(t, x, y) = �x(y).
Moreover,

K(t, x, x) = t�n/2(A(t, x) +B(t, x))(1)

with A 2 C1([0,1)⇥⌦) and a function B supported in a small neighborhood of the boundary,
which, in local coordinates (x0, xn) 2 U 0 ⇥ [0, "), U 0 ✓ Rn�1 is of the form

B(t, x) = b(t, x0, xn/
p
t), b 2 C1([0,1)1/2 ⇥ U 0 ⇥ R+)

with b(t, x0, ⇠n) rapidly decreasing as ⇠n ! 1, uniformly in t 2 [0, 1], x0 2 U 0.

5.28. Remark.
(a) As t ! 0+ we therefore obtain an expansion in half-integer powers of t by using the Taylor

expansion of A and B as t ! 0+.
(b) In view of the fact that b vanishes rapidly away from the boundary, we see that the

expansion at a point x in the interior of ⌦ is given by the expansion of A, which is the
same as in the case without boundary.

(c) While the expansion of A only furnishes integer powers of t, B now contributes terms inp
t.

5.29. Corollary. As t ! 0+ we have an asymptotic expansion
Z

⌦
K(t, x, x) dS = t�n/2(↵0 + �0 + �1/2t

1/2 + (↵1 + �1)t+ . . .),

where �0 = 0 and ↵j is as before for j 2 N0. In particular, the leading term is (4⇡t)�n/2vol⌦.

Why do these additional terms arise? We recall that on Rn the heat kernel is

K(t, x, y) = (4⇡t)�n/2 exp
⇣
� kx� yk2

4t

⌘
.

On the halfspace Rn

+ with coordinates x = (x0, xn), x0 2 Rn�1, xn � 0, it has the form

E1(t, x, y) = (4⇡t)�n/2
⇣
exp

⇣
� kx� yk2

4t

⌘
� exp

⇣
� kx⇤ � yk2

4t

⌘⌘
,

where x⇤ = (x0,�xn). One finds this solution by the standard trick of the mirror image across
the interface xn = 0.
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In the new variables

X 0 =
x0 � y0p

t
, ⇠n =

xnp
t
, ⌘n =

xnp
t
.

E1 has the form

E1(t, x, y) = (4⇡t)�n/2 exp
⇣�|X 0|2

4

⌘⇣
exp(�(⇠n � ⌘n)

2/4)� exp(⇠n + ⌘n)
2/4

⌘
.

5.30. Definition. The boundary heat calculus, denoted  ↵

H,@
(⌦), ↵  0, consists of all

smooth functions A on (0,1)⇥ ⌦⇥ ⌦ such that

(a) If x 6= y, then @�

t,x,y
A(t, x, y) = O(t1) for all � as t ! 0+ (off diagonal decay).

(b) For every x 2 int⌦, there exists a local coordinate system U ⇢ Rn for x and a function
Ã 2 C1([0,1)1/2 ⇥ Rn ⇥ U) such that

A(t, x, y) = t�
n+2
2 �↵Ã

⇣
t,
x� yp

t
, y
⌘
, x, y 2 U(1)

(we are using local coordinates on the right hand side.) In addition we require Ã to be
rapidly decreasing in the second variable, i.e.

@�

t,X,y
Ã(t,X, y) = O(|X|�1) as |X| ! 1(2)

uniformly in t and y. (i.e. at interior points we have the same properties as before).
Moreover

(c) For each boundary point there exists a local coordinate neighborhood U = U 0 ⇥ [0, ") and
functions

Ãdir 2 C1([0,1)1/2 ⇥ Rn ⇥ U)

Ãrefl, Ãbd 2 C1([0,1)1/2 ⇥ Rn�1 ⇥ R+ ⇥ U 0)

such that, for t > 0 and x = (x0, xn), y = (y0, yn) 2 U

A(t, x, y) = t�
n+2
2 �↵

⇣
Ãdir

⇣
t,
x� yp

t
, y
⌘
� Ãrefl

⇣
t,
x0 � y0p

t
,
xnp
t
,
ynp
t
, y0

⌘⌘

= t�
n+2
2 �↵

⇣
Ãbd

⇣
t,
x0 � y0p

t
,
xnp
t
,
ynp
t
, y0

⌘
(3)

with rapid decay for Ãdir as in (2) and

Ãrefl(t,X 0, ⇠n, ⌘n, y
0) = O((|X 0|+ ⇠n + ⌘n)

�1)

together with all derivative, uniformly for bounded t.

5.31. Remark.

(a) Using the coordinates X 0, ⇠n, ⌘n we can write

Ãbd(t,X 0, ⇠n, ⌘n, y
0) = Ãdir(t,X 0, ⇠n � ⌘n, y

0, ⌘n
p
t)� Ãrefl(t,X 0, ⇠n, ⌘n, y

0)

(b) Note that (c) implies (b) for y near an interior point (i.e. yn � c > 0). Namely, let

Ã(t,X, y) = Ãdir(t,X, y)� Ãrefl(t,X 0, Xn + yn/
p
t, yn/

p
t, y0).

Then A(t, x, y) = t�(n+2)/2�↵Ã(t,X, y) and Ã is smooth in
p
t. Since yn � c > 0, Ãrefl

decays to zero rapidly as t ! 0+. Hence, for the smoothness in t near t = 0 we may ignore
Arefl, and Ã = Ãdir is smooth in

p
t.
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Leading terms.

5.32. Definition. To A 2  ↵

H,@
(⌦) we associate two leading terms, �int

↵ (A) and �bd
↵ (A): The

interior leading term �int
↵ (A) is as in the case without boundary, while the boundary leading

term �bd
↵ (A) is defined by

�bd
↵ (X 0, ⇠n, ⌘n, y

0) = Ãbd(0, X 0, ⇠n, ⌘n, y).

5.33. Coordianate invariance. Similarly as before, Ãdir and Ãrefl are not uniquely defined.
We know, however, that this is the case for �int

↵ (A) which is an element of C1
S (T⌦), the smooth

functions on T⌦ which are rapidly decreasing in the fibers.
In order to obtain an invariant definition of �bd

↵ (A) we introduce the bundle E over @⌦ by letting,
for p 2 @⌦,

Ep = (Tp⌦⇥ Tp⌦)/Tp@⌦

where we identify (u, v) and (u0, v0) in Tp⌦⇥ Tp⌦ whenever u� u0 = v � v0 2 Tp@⌦. We denote
the equivalence class of (u, v) by [u, v]. We also introduce the map � : Ep ! TpM , given by

�([u, v]) = u� v.

Each Ep is a (2n � (n � 1)) = (n + 1)-dimensional vector space. The Ep then define a vector
bundle of rank n+1. It has as a subset the E+

p = (T+
p ⌦⇥ T+

p ⌦)/Tp@⌦ of all [u, v], where u and
v are inward-pointing.
One can then show that �bd

↵ (A) is an element of

C1
bd(E

+) = {�bd 2 C1(E+) : �bd = �⇤�dir � �refl for suitable
�dir 2 C1

S (T@⌦⌦),�
refl 2 C1

S (E)}.
Then �bd

↵ (A) is invariantly defined as an element of C1
bd(E

+).
In the definition of C1

bd(E
+), �dir is determined by �bd through

�dir(X, p) = lim
w

�bd([X + w,w], p),

where the limit is over all w 2 T+
p gO whose class in T+

p ⌦ tends to 1 (informally for p = (y0, 0):
Ãdir(0, X 0, Xn, y0, 0) = limr!1 Ãbd(0, X 0, Xn + r, r, y0)).
One therefore introduces the space C1

�,@
(⌦) as the space of all pairs (�int

↵ (A),�bd
↵ (A)) such that

�int
↵ (A)|T@⌦⌦ = �dir, where �dir is determined by �bd

↵ (A) as noted above.
With these definitions one obtains the short exact sequence

0 !  ↵�1/2
H,@

(⌦) !  ↵

H,@
(⌦) ! C1

�,@
(⌦) ! 0.(1)

From this point on, the argument proceeds very much like in the case without boundary.

5.34. Proposition.

(a) For A 2  ↵

H,@
(⌦) and B 2  �

H,@
(⌦) with ↵,� < 0 the convolution A ⇤B is defined and an

element of  ↵+�

H,@
.

(b) Let A 2  ↵

H,@
(⌦), ↵  �1. Then (@t ��)A 2  ↵+1

H,@
(⌦) with �↵+1(@t ��)A)(X, y) as in

Proposition 5.20 and
�bd
↵+1(@t ��)A)(X 0, ⇠n, ⌘n, y

0)

=
⇣
� n+ 2

2
� ↵� 1

2
X 0@X0 � 1

2
⇠n@⇠n � 1

2
⌘n@⌘n ��0,y

X0,⇠n

⌘
�bd
↵ (A)(X 0, ⇠n, ⌘n, y

0).

Proof. See Grieser. ⇤
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We are almost there. However, we still need to take care of the boundary condition. We therefore
introduce the subclass

 ↵

H,Dir = {A 2  ↵

H,@
(⌦) : A(t, x, y) = 0 if x 2 @⌦}.

5.35. Lemma.
(a) For A 2  ↵

H,Dir(⌦) and B 2  �

DirH, @(⌦) with ↵,� < 0 the convolution A⇤B is an element
of  ↵+�

H,Dir.
(b) There is a short exact sequence for  ↵

Dir(⌦) with boundary leading parts vanishing at
⇠n = 0.

(c) The value of Af at t = 0 can be determined as in Lemma 5.21 from the interior leading
part alone.

Proof. (a) is obvious. (b) follows from the fact that ⇠n = xn/
p
t. (c) is as before. ⇤

5.36. Proposition. Assume K1 2  �1
H,@

satisfies

(i) (@t ��)K1 = R 2  �1/2
H,@

(⌦)

(ii) K1(t, x, y) = 0 for x 2 @⌦.
(iii) limt!0+ K1(tax, y) = �x(y).
Then
(a) K =

P1
j=0(�1)jK1 ⇤Rj⇤ converges in C1([0,1)⇥ ⌦⇥ ⌦) and K 2  �1

H,Dir(⌦).
(b) K satisfies the heat equation and the Dirichlet boundary value.
(c) K1 ⇤RN⇤ 2  �1�N/2(⌦) and the series is an asymptotic series in 1/2-powers of t.

5.37. The concrete case. We use geodesic normal coordinates, so that locally near the
boundary we have x = (x0, xn) with x0 2 @⌦, xn � 0 such that @xn

is orthogonal to T@⌦ and of
length 1. The metric in this neighborhood is of the form

g(x) =

✓
⇤ 0
0 1

◆
.

With the notation X 0 = x
0�y

0
p
t

, ⇠n = xnp
t
, ⌘n = ynp

t
. Then the starting value for the iteration is

K1(t, x, y) = (4⇡t)�n/2e�|X0|2
g(y)/4

⇣
e(⇠n�⌘n)2/4 � e(⇠n+⌘n)2/4.

⌘
(1)

Clearly K1 2  �1
H,Dir. Moreover, a computation using Proposition 5.20 and 5.35(c) shows that

�int
0 ((@t ��)K1) = 0 and �bd

0 ((@t ��)K1) = 0, so that (@t ��)K1 2  �1/2 by the exactness
of the sequence 5.35(1).
Hence K1 satisfies the assumptions of Proposition 5.36.

5.38. The expansion (Pleijel 1954). Let us have a look at the expansion
Z

⌦
K(t, x, x) dS ⇠ t�n/2(↵0 + ↵1t

1/2 + . . .).

For the leading terms it suffices to study K1. For x = y we obtain

K1(t, x, x) = (4⇡t)�n/2 · 1 · (1� e�⇠
2
n).

This shows that (in the notation of Theorem 5.27)

K1(t, x, x) = t�n/2(A(t, x) +B(t, x))

with
A(t, x) ⌘ (4⇡)�n/2 and B(t, x) = �(4⇡)�n/2e�x

2
n/t.
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The contribution from A to the expansion is the same as in the boundaryless case, namely
Z

⌦
A(t, x, x) dS =

Z

⌦
(4⇡)�n/2dS = (4⇡)�n/2vol⌦.

For B we haveZ

⌦
B(t, x, x)dS = �

Z

@⌦
(4⇡)�n/2 dS0

Z 1

0
e(x

/

n

p
t)2 dxn

= �(4⇡)�n/2vol (@⌦) ·
p
t

Z 1

0
e�u

2
du = �(4⇡)�n/2vol (@⌦) ·

p
t
p
⇡/2

= �(4⇡)�(n�1)/2vol (@⌦)
4

·
p
t

5.39. Remark. For the Neumann problem one obtains almost the same formula; there the
sign of the second coefficient is + instead of �.

5.d. The formula of McKean and Singer. As before let (⌦, g) be a smooth Riemannian
manifold with boundary.

5.40. Theorem. McKean&Singer 1967 The trace of the heat kernel has the expansion

Tr(et�Dir) = (4⇡t)�n/2
⇣
vol⌦�

p
t
p
4⇡

vol @⌦
4

� t

6

Z

⌦
K dS +

t

6

Z

@⌦
J dS0 +O(t3/2)

⌘

Here, K is the scalar curvature of ⌦ and J is the mean curvature, defined below, and dS0 is the
surface measure on @⌦ introduced by the restriction of the metric.

5.41. Definition. Let Rk,i,j,m be the components of the Riemann curvature tensor associated
with g. The Ricci tensor has the components

Ricij =
X

km

gkmRkijm,

and the scalar curvature is
K = � trRic = �

X

ij

gijRij .

The mean curvature of a hypersurface (in our case the boundary of the manifold is given by
H = 1

n�1(1 + . . .n�1), where j are the principal curvatures of the hypersurface.

Idea of the proof. The proof of the theorem by McKean and Singer is a lengthy computation.
In principle, we can apply the above iteration starting from the approximation of the heat
kernel given in 5.37(1). Then the contribution to the factor t�n/2+1 is given by the boundary
contribution from the term K1 ⇤ R, where R = (@t � �)K1 and from the interior contribution
of K1 ⇤ R ⇤ R. This is essentially what McKean and Singer do; for the case without boundary,
however, they start with a better approximation and therefore only have to do one iteration. C
Following up on work by Polterovich [7], Weingart [11] showed the following formula for the case
without boundary:

5.42. Theorem. Let (⌦, g) be a smooth closed Riemannian manifold. Then the heat coefficients
are given by the formula:

ak(x) =
kX

l=0

⇣
� 1

4

⌘
l
✓
k + n/2

k � l

◆⇣(�1)k+l

(k + l)!
�k+l

y

⇣ 1

l!
dist2l(x, y)

⌘

y=x

⌘
.


