4. General Second Order Strongly Elliptic Operators

4.1. Set-Up. Let $\Omega \subseteq \mathbb{R}^{n}$ be bounded and open. We consider operators of the form

$$
\begin{equation*}
A=-\sum_{j, k=1}^{n} a^{j k}(x) \partial_{x_{j}} \partial_{x_{k}}+\sum b^{j}(x) \partial_{x_{j}}+c(x) \tag{1}
\end{equation*}
$$

where $a^{j, k}, b^{j}$ and c are continuous, real-valued functions, $a^{j k}=a^{k j}$ and

$$
\begin{equation*}
c_{a}|\xi|^{2} \leq \sum a^{j k}(x) \xi_{j} \xi_{k} \leq C_{a}|\xi|^{2} \tag{2}
\end{equation*}
$$

with suitable constants c and C.
We define the forms

$$
\begin{equation*}
q_{D / N}^{A}(u, v)=\int_{\Omega} \sum_{j, k} a^{j k}(x) \partial_{x_{k}} u(x) \partial_{x_{k}} \bar{v}(x)+\sum_{j} b^{j}(x) u(x) \bar{v}(x)+c(x) u(x) \bar{v}(x) d x \tag{3}
\end{equation*}
$$

with domain $W_{0}^{1,2}(\Omega) \times W_{0}^{1,2}(\Omega)$ for q_{D}^{D} and $W^{1,2}(\Omega) \times W^{1,2}(\Omega)$ for q_{N}^{D}. By Theorem 2.4 they furnish self-adjoint, positive operators $A_{D / N}$.
In a first step we will also assume that all coefficients are constant. Since $a=\left(a^{j k}\right)$ is realsymmetric, we can write

$$
a=s^{*} d s
$$

where s is an orthogonal matrix and d is diagonal.
We start with the case of a diagonal operator

$$
D=-\sum_{k=1}^{n} d_{k}^{2} \partial_{x_{k}}^{2}
$$

and denote by $D_{D / N}$ the operators obtained from the corresponding restriction of the form (3).
4.2. Theorem. Let Ω be a bounded, contented open set in \mathbb{R}^{n}. Then

$$
N_{D_{D / N}}(\lambda)=\prod_{k=1}^{n} d_{k}^{-1} N_{(-\Delta)_{D / N}}(\lambda)
$$

Proof. Fix $r>0$. Following Theorem 3.1 we see that on the interval $I_{r d}=\prod\left[0, r d_{k}\right]$ the functions

$$
\begin{array}{ll}
s_{j}(x)=\prod_{k=1}^{n} \sqrt{\frac{2}{r d_{k}}} \sin \left(j_{k} x_{k} \frac{\pi}{r d_{k}}\right), & j \in \mathbb{N}^{n} \text { and } \\
c_{j}(x)=\prod_{k=1}^{n} \sqrt{\frac{2}{r d_{k}}} \cos \left(j_{k} x_{k} \frac{\pi}{r d_{k}}\right), & j \in \mathbb{N}_{0}^{n}
\end{array}
$$

form a complete set of eigenfunctions for the operators D_{D} and D_{N}, respectively. We have

$$
\begin{aligned}
D_{D} s_{j} & =\sum_{k=1}^{n} \frac{j_{k}^{2} \pi^{2}}{r^{2}} s_{j}, j \in \mathbb{N}^{n} \\
D_{N} c_{j} & =\sum_{k=1}^{n} \frac{j_{k}^{2} \pi^{2}}{r^{2}} c_{j}, j \in \mathbb{N}_{0}^{n}
\end{aligned}
$$

For the counting functions we therefore obtain:

$$
N_{D_{D / N}}\left(\lambda ; I_{r d}\right)=\left\{j: \sum_{k} \frac{j_{k}^{2} \pi^{2}}{r^{2}} \leq \lambda\right\}=\left\{j:\|j\| \leq \frac{r}{\pi} \sqrt{\lambda}\right\}=N_{(-\Delta)_{D / N}}\left(\lambda ; I_{r}\right)
$$

Here, $N_{(-\Delta)_{D / N}}\left(\lambda ; I_{r}\right)$ is the counting function of the Dirichlet/Neumann Laplacian on the cube $I_{r}=[0, r]^{n}$, which, as we know, satisfies

$$
N_{(-\Delta)_{D / N}}\left(\lambda ; I_{r d}\right)=\frac{1}{(2 \pi)^{n}} \operatorname{vol}(B(0,1)) r^{n} \lambda^{n / 2}+O\left(\left(r^{2} \lambda\right)^{(n-1) / 2}\right)
$$

For fixed $m \in \mathbb{N}$ we next tile \mathbb{R}^{n} by the half-open intervals

$$
\left[\frac{z_{1} d_{1}}{2^{m}}, \frac{\left(z_{1}+1\right) d_{1}}{2^{m}}\right) \times \ldots \times\left[\frac{z_{n} d_{n}}{2^{m}}, \frac{\left(z_{n}+1\right) d_{1}}{2^{m}}\right), \quad z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{Z}^{n}
$$

Just as for the Dirichlet/Neumann Laplacian we can then apply the Dirichlet-Neumann bracketing. The difference is that we have replaced the cubes of side length 2^{-m} by intervals of side lengths $2^{-m} d_{k}, k=1, \ldots, n$. Their volume differs by a factor $\prod d_{k}$ from the cubes' volume. The number of intervals of the form I_{d} needed to cover Ω from the interior/exterior (in the sense of the of the sets Ω_{m}^{\mp} in the proof of Theorem 3.14) therefore is $\prod d_{k}^{-1}$ times the number of cubes. This shows the assertion.
4.3. Coordinate transforms. Let $T: V \rightarrow U$ be a diffeomorphism of open sets in \mathbb{R}^{n} and let A be a (differential) operator defined on, say $C_{c}^{\infty}(V)$. Then we obtain a (differential) operator $T_{*} A$ on $C_{c}^{\infty}(U)$ by

$$
\left(T_{*} A u\right)(x)=A(U \circ T)\left(T^{-1} x\right) .
$$

For later use we compute the first and second order derivatives, assuming for the moment that T is linear, writing $T=\left(t_{l m}\right)$:

$$
\begin{aligned}
\partial_{x_{k}}(u \circ T)(x) & =\partial_{x_{k}}\left(u\left(\left(\sum_{m} t_{l m} x_{m}\right)_{l}\right)\right) \\
& =\sum_{p=1}^{n}\left(\partial_{y_{p}} u\right)\left(\left(\sum_{m} t_{l m} x_{m}\right)_{l}\right) t_{p k} \text { and } \\
\partial_{x_{j}} \partial_{x_{k}}(u \circ T)(x) & =\partial_{x_{j}}\left(\sum_{p=1}^{n}\left(\partial_{y_{p}} u\right)\left(\left(\sum_{m} t_{l m} x_{m}\right)_{l}\right) t_{p k}\right) \\
& \left.=\sum_{p, q=1}^{n}\left(\partial_{y_{q}} \partial_{y_{p}} u\right)\left(\left(\sum_{m} t_{l m} x_{m}\right)_{l}\right) t_{q j} t_{p k}\right)
\end{aligned}
$$

Thus

$$
\partial_{x_{j}} \partial_{x_{k}}(u \circ T)\left(T^{-1} x\right)=\sum_{p, q=1}^{n}\left(\partial_{y_{q}} \partial_{y_{p}} u\right)(x) t_{q j} t_{p k}
$$

Writing h for the Hessian matrix $\left(h_{q p}\right)_{q p}=\left(\partial_{y_{q}} \partial_{y_{p}}\right)_{q p}$, we obtain

$$
T_{*}\left(\partial_{x_{j}} \partial_{x_{k}}\right)=\left(\sum_{q=1}^{n} \sum_{p=1}^{n} h_{q p} t_{q j} t_{p k}\right)_{j k}=\left(T^{*} h T\right)_{j k}
$$

4.4. Example. We consider the principal part A^{H} of the operator A in 4.1 with constant coefficients:

$$
A^{H}=-\sum_{j k} a^{j k} \partial_{x_{j}} \partial_{x_{k}}
$$

As in $4.1(3)$ we assume that $a=s^{*} d s$ for an orthogonal matrix s and a diagonal matrix $d=$ $\operatorname{diag}\left(d_{1}^{2}, \ldots, d_{n}^{2}\right)$. We also suppose that the boundary of Ω is C^{2}.

We derive from (4.3) that

$$
\begin{aligned}
s_{*} A^{H} & =-\sum_{j k} a^{j k}\left(s^{*} h s\right)_{j k}=-\sum_{j k} a^{j k}\left(s^{*} h s\right)_{j k} \\
& =-\operatorname{Tr}\left(a s^{*} h s\right)=-\operatorname{Tr}\left(s a s^{*} h\right)=\operatorname{Tr}(d h) \\
= & =-\sum_{k} d_{k}^{2} \partial_{x_{k}}^{2}=D
\end{aligned}
$$

with the operator D defined in 4.1.
By $A_{D / N}^{H}$ we denote the self-adjoint, positive operators obtained from the forms

$$
q_{D / N}(u, v)=\sum_{j k} \int_{\Omega} a^{j k} \partial_{x_{j}} u \partial_{x_{k}} \bar{v} d x
$$

with domains $W_{0}^{1,2}(\Omega) \times W_{0}^{1,2}(\Omega)$ and $W^{1,2}(\Omega) \times W^{1,2}(\Omega)$. respectively. These operators have compact resolvent and therefore their spectrum consists of eigenvalues $0 \leq \lambda_{k} \rightarrow+\infty$. Since the boundary is C^{2}, the operators A_{D}^{H} and A_{N}^{H} act on their domains as the operator A^{H}.
Now we make the following observation: Suppose v is an eigenfunction for the eigenvalue λ of A^{H}. Then $u=v \circ s^{-1}$ is an eigenfunction for the eigenvalue λ of $s_{*} A^{H}$:

$$
\left(s_{*} A^{H}\right) u(x)=A^{H}(u \circ s)\left(s^{-1}(x)\right)=\left(A^{H} v\right)\left(s^{-1}(x)\right)=\lambda v\left(s^{-1}(x)\right)=\lambda u(x) .
$$

Conversely, if u is an eigenfunction for the eigenvalue λ of $s_{*} A^{H}$, then $v=u \circ s$ is an eigenfunction for A^{H}. Hence the spectra and also the counting function for A^{H} and $s_{*} A^{H}$ coincide. We therefore obtain

$$
N_{A_{D / N}^{H}}(\lambda)=N_{s_{*} A_{D / N}^{H}}(\lambda)=N_{D_{D / N}}(\lambda)=\frac{1}{\prod d_{k}} N_{-\Delta_{D / N}}(\lambda)=\frac{1}{\sqrt{\operatorname{det} a}} N_{-\Delta_{D / N}}(\lambda)
$$

4.5. The constant coefficient case. Assume Weyl asymptotics hold for the Dirchlet and the Neumann Laplacian on Ω. For the Dirichlet and Neumann realizations $A_{D / N}$ of the operator A in 4.1 with constant coefficients we have.

$$
N_{A_{D / N}}(\lambda)=(\operatorname{det} a)^{-1 / 2} \frac{\operatorname{vol} \Omega \operatorname{vol} B(0,1)}{(2 \pi)^{n}} \lambda^{n / 2}+o\left(\lambda^{n / 2}\right)
$$

Proof. Consider the forms

$$
q_{D / N}(u, v)=\int_{\Omega} \sum_{j k} a^{j k} \partial_{x_{j}} u \partial_{x_{k}} \bar{v}+\sum_{j=1}^{n} b^{j} \partial_{x_{j}} u \bar{v}+c u \bar{v} d x
$$

with domains $W_{0}^{1,2}(\Omega) \times W_{0}^{1,2}(\Omega)$ and $W^{1,2}(\Omega) \times W^{1,2}(\Omega)$, respectively. These forms are semibounded: For every j and every $\varepsilon>0$ there exists a C_{ε} such that

$$
b^{j} \partial_{x_{j}} u \bar{v} \leq\left|b^{j}\right|\left|\partial_{x_{j}} u \bar{v}\right| \leq\left|b^{j}\right| \varepsilon\left|\partial_{x_{j}} u\right|^{2}+C_{\varepsilon}|v|^{2}
$$

By assumption $\sum_{j, k} a^{j k} \xi_{j} \xi_{k} \geq c_{a}|\xi|^{2}$ for some constant $c_{a}>0$. We deduce that, for every $\varepsilon>0$, we find a C_{ε}, depending on ε, b and c with

$$
q_{D / N}(u, u) \geq\left(c_{a}-\varepsilon\right)\|\nabla u\|_{L^{2}(\Omega)}^{2}-C_{\varepsilon}\|u\|_{L^{2}(\Omega)}^{2}
$$

It is also closed, so that we obtain the self-adjoint operators $A_{D / N}$ from Theorem 2.4. They have compact resolvents and correspondingly, a discrete set of real eigenvalues tending to $+\infty$.

In order to determine the asymptotic of the respective counting functions of A from those of A^{H}, we compare the forms. The estimate

$$
\left|\sum_{j=1}^{n} \int b^{j} \partial_{x_{j}} u \bar{u}+c u \bar{u} d x\right| \leq \varepsilon\|\nabla u\|_{L^{2}(\Omega)}+C_{\varepsilon}\|u\|^{2}
$$

for arbitrary $\varepsilon>0$ and suitable C_{ε} implies that, also for arbitrary $\varepsilon>0$ and suitable C_{ε},

$$
\begin{aligned}
& q_{D / N}(u, u) \leq(1+\varepsilon) q_{D / N}^{A^{H}}(u, u)+C_{\varepsilon}\|u\|_{L^{2}(\Omega)} \\
& q_{D / N}(u, u) \text { and } \\
&(1-\varepsilon) q_{D / N}^{A^{H}}(u, u)-C_{\varepsilon}\|u\|_{L^{2}(\Omega)} .
\end{aligned}
$$

Since the forms $q_{D / N}$ and $q_{D / N}^{A^{H}}$ have the same domains, we infer from the minimax principle that

$$
\begin{align*}
& \lambda_{k}^{A_{D / N}} \leq(1+\varepsilon) \lambda_{k}^{A_{D / N}^{H}}+C_{\varepsilon} \quad \text { and } \tag{1}\\
& \lambda_{k}^{A_{D / N}} \geq(1-\varepsilon) \lambda_{k}^{A_{D / N}^{H}}-C_{\varepsilon} .
\end{align*}
$$

Hence $\lambda_{k}^{A_{D / N}^{H}} \leq \lambda$ implies that $(1-\varepsilon) \lambda_{k}^{A_{D / N}^{H}}-C_{\varepsilon} . \leq \lambda$ which in turn shows that $\lambda_{k}^{A_{D / N}^{H}} \leq$ $\frac{1}{1-\varepsilon} \lambda+\frac{C_{\varepsilon}}{1-\varepsilon}$. We conclude from (2) that

$$
\begin{aligned}
N_{A_{D / N}}(\lambda) & \leq N_{A_{D / N}}\left(\frac{1}{1-\varepsilon} \lambda+\frac{C_{\varepsilon}}{1-\varepsilon}\right) \\
& =(\operatorname{det} a)^{-1 / 2} N_{-\Delta_{D / N}}\left(\frac{1}{1-\varepsilon} \lambda+\frac{C_{\varepsilon}}{1-\varepsilon}\right)+O\left(\left(\frac{1}{1-\varepsilon} \lambda+\frac{C_{\varepsilon}}{1-\varepsilon}\right)^{\frac{n-1}{2}}\right)
\end{aligned}
$$

Similarly, (1) implies that

$$
\begin{aligned}
N_{A_{D / N}}(\lambda) & \geq N_{A_{D / N}}\left(\frac{1}{1+\varepsilon} \lambda-\frac{C_{\varepsilon}}{1+\varepsilon}\right) \\
& =(\operatorname{det} a)^{-1 / 2} N_{-\Delta_{D / N}}\left(\frac{1}{1+\varepsilon} \lambda-\frac{C_{\varepsilon}}{1+\varepsilon}\right)+O\left(\left(\frac{1}{1+\varepsilon} \lambda-\frac{C_{\varepsilon}}{1+\varepsilon}\right)^{\frac{n-1}{2}}\right)
\end{aligned}
$$

This implies the desired estimate: In fact, we know that $C_{\varepsilon} \leq C / \varepsilon$ for suitable C. Let $f: \mathbb{R}_{>0} \rightarrow$ $\mathbb{R}_{>0}$ be a function satisfying

$$
f(\lambda) \geq(1-\varepsilon) \lambda^{n / 2}-\frac{C}{\varepsilon} o\left(\lambda^{n / 2}\right) \text { and } f(\lambda) \leq(1+\varepsilon) \lambda^{n / 2}+\frac{C}{\varepsilon} o\left(\lambda^{n / 2}\right)
$$

 that for some sequence $\lambda^{(k)}$ we would have, for all k,

$$
-\frac{\delta}{2}+\frac{2 C}{\delta}\left(\lambda^{(k)}\right)^{-1 / 2}<-\delta,
$$

which is not possible. In the same way we can treat $\lim \sup _{\lambda \rightarrow \infty} f(\lambda) \lambda^{-n / 2}-1$.
4.6. Variable coefficients, Dirichlet boundary conditions. Let Ω be open and contented. For the Dirichlet realization A_{D} of the operator A in 4.1 with variable coefficients we then have.

$$
N_{A_{D}}(\lambda)=\frac{\operatorname{vol}_{g} \Omega \operatorname{vol} B(0,1)}{(2 \pi)^{n}} \lambda^{n / 2}+o\left(\lambda^{n / 2}\right),
$$

where $\operatorname{vol}_{g} \Omega$ is the volume of Ω measured in the Riemannian metric $g=a^{-1}$.
Proof. For fixed $m \in \mathbb{N}$ we next tile \mathbb{R}^{n} by the half-open intervals

$$
I_{z}=\left[\frac{z_{1} d_{1}}{2^{m}}, \frac{\left(z_{1}+1\right) d_{1}}{2^{m}}\right) \times\left[\frac{z_{n} d_{n}}{2^{m}}, \frac{\left(z_{n}+1\right) d_{1}}{2^{m}}\right), \quad z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{Z}^{n} .
$$

On each interval I_{z} consider the form

$$
q_{D}(u, v)=\int_{I_{z}} \sum_{j k} a^{j k} \partial_{x_{j}} u \partial_{x_{k}} \bar{v}+\sum_{j=1}^{n} b^{j} \partial_{x_{j}} u \bar{v}+c u \bar{v} d x
$$

with domain $W_{0}^{1,2}\left(I_{z}\right) \times W_{0}^{1,2}\left(I_{z}\right)$. This form is closed and semi-bounded by the same arguments as in the proof of 4.5. It defines a selfadjoint operator A_{D} with discrete real spectrum consisting of eigenvalues $\lambda_{k}^{A_{D}} j$ tending to ∞.
Denote by x_{z} the midpoint of I_{z}. We can then compare the forms q_{D} with the constant coefficient forms

$$
q_{D}^{z}(u, v)=\int_{I_{z}} \sum_{j k} a^{j k}\left(x_{z}\right) \partial_{x_{j}} u \partial_{x_{k}} \bar{v}+\sum_{j=1}^{n} b^{j}\left(x_{z}\right) \partial_{x_{j}} u \bar{v}+c\left(x_{z}\right) u \bar{v} d x
$$

Let $\varepsilon>0$ be given. By taking m large (and hence the diameter of the intervals small) we can achieve that, with suitable $C_{\varepsilon}>0$,

$$
\begin{aligned}
& q_{D}(u, u) \leq(1+\varepsilon) q_{D}^{z}(u, u)+C_{\varepsilon}\|u\|_{L^{2}(\Omega)} \quad \text { and } \\
& q_{D}(u, u) \geq(1-\varepsilon) q_{D}^{z}(u, u)-C_{\varepsilon}\|u\|_{L^{2}(\Omega)}
\end{aligned}
$$

As in the proof of 4.5 we conclude that the counting functions on each I_{z} satisfy

$$
\begin{aligned}
& N_{A_{D}}(\lambda) \geq(1-\varepsilon)\left(\operatorname{det} a_{z}\right)^{-1 / 2}(2 \pi)^{-n} \operatorname{vol} I_{z} \operatorname{vol} B(0,1) \lambda^{n / 2}-C_{\varepsilon} \cdot o\left(\lambda^{n / 2}\right) \quad \text { and } \\
& N_{A_{D}}(\lambda) \leq(1+\varepsilon)\left(\operatorname{det} a_{z}\right)^{-1 / 2}(2 \pi)^{-n} \operatorname{vol} I_{z} \operatorname{vol} B(0,1) \lambda^{n / 2}+C_{\varepsilon} \cdot o\left(\lambda^{n / 2}\right)
\end{aligned}
$$

where $a_{c}=\left(a^{j k}\left(x_{z}\right)\right)_{j k}$. Dirichlet-Neumann bracketing and taking the limit as $m \rightarrow \infty$ then implies that

$$
N_{A_{D}}(\lambda)=\int_{\Omega}(\operatorname{det} a(x))^{-1 / 2} d x \frac{\operatorname{vol} B(0,1)}{(2 \pi)^{n}} \lambda^{n / 2}+o\left(\lambda^{n / 2}\right)
$$

Finally we note that

$$
\int_{\Omega}(\operatorname{det} a(x))^{-1 / 2} d x=\int_{\Omega} \sqrt{\operatorname{det} a(x)^{-1}} d x=\operatorname{vol}_{g}(\Omega)
$$

for the Riemannian metric $g=a^{-1}$.
4.7. Remark. Second order operators on manifolds. Let Ω be a smooth manifold of dimension n, and let A be a strongly elliptic second order operator that locally is of the form in 4.1.

According to Whitehead [12] every smooth manifold admits a triangulation. For each simplicial set we can consider the corresponding operator on a simplex in \mathbb{R}^{n}. On the simplex, we can derive Weyl asymptotics as in 4.6 for the local operator.
I expect that, via Dirichlet-Neumann bracketing we then obtain the Weyl asymptotics on the manifold.

