4. General Second Order Strongly Elliptic Operators

4.1. Set-Up. Let $\Omega \subseteq \mathbb{R}^n$ be bounded and open. We consider operators of the form

(1)
$$A = -\sum_{j,k=1}^{n} a^{jk}(x)\partial_{x_j}\partial_{x_k} + \sum b^j(x)\partial_{x_j} + c(x),$$

where $a^{j,k}, b^j$ and c are continuous, real-valued functions, $a^{jk} = a^{kj}$ and

(2)
$$c_a|\xi|^2 \le \sum a^{jk}(x)\xi_j\xi_k \le C_a|\xi|^2$$

with suitable constants c and C.

We define the forms

(3)
$$q_{D/N}^{A}(u,v) = \int_{\Omega} \sum_{j,k} a^{jk}(x) \partial_{x_{k}} u(x) \partial_{x_{k}} \overline{v}(x) + \sum_{j} b^{j}(x) u(x) \overline{v}(x) + c(x) u(x) \overline{v}(x) \, dx$$

with domain $W_0^{1,2}(\Omega) \times W_0^{1,2}(\Omega)$ for q_D^D and $W^{1,2}(\Omega) \times W^{1,2}(\Omega)$ for q_N^D . By Theorem 2.4 they furnish self-adjoint, positive operators $A_{D/N}$.

In a first step we will also assume that all coefficients are constant. Since $a = (a^{jk})$ is realsymmetric, we can write

$$a = s^* ds,$$

where s is an orthogonal matrix and d is diagonal. We start with the case of a diagonal operator

$$D = -\sum_{k=1}^{n} d_k^2 \partial_{x_k}^2$$

and denote by $D_{D/N}$ the operators obtained from the corresponding restriction of the form (3). 4.2. Theorem. Let Ω be a bounded, contented open set in \mathbb{R}^n . Then

$$N_{D_{D/N}}(\lambda) = \prod_{k=1}^{n} d_{k}^{-1} N_{(-\Delta)_{D/N}}(\lambda).$$

Proof. Fix r > 0. Following Theorem 3.1 we see that on the interval $I_{rd} = \prod [0, rd_k]$ the functions

$$s_j(x) = \prod_{k=1}^n \sqrt{\frac{2}{rd_k}} \sin\left(j_k x_k \frac{\pi}{rd_k}\right), \quad j \in \mathbb{N}^n \text{ and}$$
$$c_j(x) = \prod_{k=1}^n \sqrt{\frac{2}{rd_k}} \cos\left(j_k x_k \frac{\pi}{rd_k}\right), \quad j \in \mathbb{N}_0^n$$

form a complete set of eigenfunctions for the operators D_D and D_N , respectively. We have

$$D_D s_j = \sum_{k=1}^n \frac{j_k^2 \pi^2}{r^2} s_j, j \in \mathbb{N}^n$$
$$D_N c_j = \sum_{k=1}^n \frac{j_k^2 \pi^2}{r^2} c_j, j \in \mathbb{N}_0^n.$$

For the counting functions we therefore obtain:

$$N_{D_{D/N}}(\lambda; I_{rd}) = \left\{ j : \sum_{k} \frac{j_k^2 \pi^2}{r^2} \le \lambda \right\} = \left\{ j : \|j\| \le \frac{r}{\pi} \sqrt{\lambda} \right\} = N_{(-\Delta)_{D/N}}(\lambda; I_r)$$

Here, $N_{(-\Delta)_{D/N}}(\lambda; I_r)$ is the counting function of the Dirichlet/Neumann Laplacian on the cube $I_r = [0, r]^n$, which, as we know, satisfies

$$N_{(-\Delta)_{D/N}}(\lambda; I_{rd}) = \frac{1}{(2\pi)^n} \operatorname{vol}(B(0,1)) r^n \lambda^{n/2} + O((r^2 \lambda)^{(n-1)/2})$$

For fixed $m \in \mathbb{N}$ we next tile \mathbb{R}^n by the half-open intervals

$$\left[\frac{z_1d_1}{2^m}, \frac{(z_1+1)d_1}{2^m}\right) \times \ldots \times \left[\frac{z_nd_n}{2^m}, \frac{(z_n+1)d_1}{2^m}\right), \quad z = (z_1, \ldots, z_n) \in \mathbb{Z}^n$$

Just as for the Dirichlet/Neumann Laplacian we can then apply the Dirichlet-Neumann bracketing. The difference is that we have replaced the cubes of side length 2^{-m} by intervals of side lengths $2^{-m}d_k$, $k = 1, \ldots, n$. Their volume differs by a factor $\prod d_k$ from the cubes' volume. The number of intervals of the form I_d needed to cover Ω from the interior/exterior (in the sense of the of the sets Ω_m^{\pm} in the proof of Theorem 3.14) therefore is $\prod d_k^{-1}$ times the number of cubes. This shows the assertion.

4.3. Coordinate transforms. Let $T: V \to U$ be a diffeomorphism of open sets in \mathbb{R}^n and let A be a (differential) operator defined on, say $C_c^{\infty}(V)$. Then we obtain a (differential) operator T_*A on $C_c^{\infty}(U)$ by

$$(T_*Au)(x) = A(U \circ T)(T^{-1}x).$$

For later use we compute the first and second order derivatives, assuming for the moment that T is linear, writing $T = (t_{lm})$:

$$\partial_{x_k}(u \circ T)(x) = \partial_{x_k} \left(u \left(\left(\sum_m t_{lm} x_m \right)_l \right) \right)$$

= $\sum_{p=1}^n (\partial_{y_p} u) \left(\left(\sum_m t_{lm} x_m \right)_l \right) t_{pk}$ and
 $\partial_{x_j} \partial_{x_k} (u \circ T)(x) = \partial_{x_j} \left(\sum_{p=1}^n (\partial_{y_p} u) \left(\left(\sum_m t_{lm} x_m \right)_l \right) t_{pk} \right)$
= $\sum_{p,q=1}^n (\partial_{y_q} \partial_{y_p} u) \left(\left(\sum_m t_{lm} x_m \right)_l \right) t_{qj} t_{pk} \right)$

Thus

$$\partial_{x_j}\partial_{x_k}(u \circ T)(T^{-1}x) = \sum_{p,q=1}^n (\partial_{y_q}\partial_{y_p}u)(x)t_{qj}t_{pk}$$

Writing h for the Hessian matrix $(h_{qp})_{qp} = (\partial_{y_q} \partial_{y_p})_{qp}$, we obtain

$$T_*(\partial_{x_j}\partial_{x_k}) = \left(\sum_{q=1}^n \sum_{p=1}^n h_{qp} t_{qj} t_{pk}\right)_{jk} = (T^*hT)_{jk}.$$

4.4. Example. We consider the principal part A^H of the operator A in 4.1 with constant coefficients:

$$A^H = -\sum_{jk} a^{jk} \partial_{x_j} \partial_{x_k}.$$

As in 4.1(3) we assume that $a = s^* ds$ for an orthogonal matrix s and a diagonal matrix $d = \text{diag}(d_1^2, \ldots, d_n^2)$. We also suppose that the boundary of Ω is C^2 .

We derive from (4.3) that

$$s_*A^H = -\sum_{jk} a^{jk} (s^*hs)_{jk} = -\sum_{jk} a^{jk} (s^*hs)_{jk}$$

= -Tr(as^*hs) = -Tr(sas^*h) = Tr(dh)
= -\sum_k d_k^2 \partial_{x_k}^2 = D

with the operator D defined in 4.1.

By $A_{D/N}^H$ we denote the self-adjoint, positive operators obtained from the forms

$$q_{D/N}(u,v) = \sum_{jk} \int_{\Omega} a^{jk} \partial_{x_j} u \partial_{x_k} \overline{v} \, dx$$

with domains $W_0^{1,2}(\Omega) \times W_0^{1,2}(\Omega)$ and $W^{1,2}(\Omega) \times W^{1,2}(\Omega)$. respectively. These operators have compact resolvent and therefore their spectrum consists of eigenvalues $0 \leq \lambda_k \to +\infty$. Since the boundary is C^2 , the operators A_D^H and A_N^H act on their domains as the operator A^H .

Now we make the following observation: Suppose v is an eigenfunction for the eigenvalue λ of A^H . Then $u = v \circ s^{-1}$ is an eigenfunction for the eigenvalue λ of s_*A^H :

$$(s_*A^H)u(x) = A^H(u \circ s)(s^{-1}(x)) = (A^H v)(s^{-1}(x)) = \lambda v(s^{-1}(x)) = \lambda u(x).$$

Conversely, if u is an eigenfunction for the eigenvalue λ of s_*A^H , then $v = u \circ s$ is an eigenfunction for A^H . Hence the spectra and also the counting function for A^H and s_*A^H coincide. We therefore obtain

$$N_{A_{D/N}^{H}}(\lambda) = N_{s_{*}A_{D/N}^{H}}(\lambda) = N_{D_{D/N}}(\lambda) = \frac{1}{\prod d_{k}} N_{-\Delta_{D/N}}(\lambda) = \frac{1}{\sqrt{\det a}} N_{-\Delta_{D/N}}(\lambda)$$

4.5. The constant coefficient case. Assume Weyl asymptotics hold for the Dirchlet and the Neumann Laplacian on Ω . For the Dirichlet and Neumann realizations $A_{D/N}$ of the operator A in 4.1 with constant coefficients we have.

$$N_{A_{D/N}}(\lambda) = (\det a)^{-1/2} \frac{\operatorname{vol} \Omega \operatorname{vol} B(0,1)}{(2\pi)^n} \lambda^{n/2} + o(\lambda^{n/2}).$$

Proof. Consider the forms

$$q_{D/N}(u,v) = \int_{\Omega} \sum_{jk} a^{jk} \partial_{x_j} u \partial_{x_k} \overline{v} + \sum_{j=1}^n b^j \partial_{x_j} u \overline{v} + c u \overline{v} \, dx$$

with domains $W_0^{1,2}(\Omega) \times W_0^{1,2}(\Omega)$ and $W^{1,2}(\Omega) \times W^{1,2}(\Omega)$, respectively. These forms are semibounded: For every j and every $\varepsilon > 0$ there exists a C_{ε} such that

$$b^{j}\partial_{x_{j}}u\overline{v} \leq |b^{j}||\partial_{x_{j}}u\overline{v}| \leq |b^{j}|\varepsilon|\partial_{x_{j}}u|^{2} + C_{\varepsilon}|v|^{2}.$$

By assumption $\sum_{j,k} a^{jk} \xi_j \xi_k \ge c_a |\xi|^2$ for some constant $c_a > 0$. We deduce that, for every $\varepsilon > 0$, we find a C_{ε} , depending on ε , b and c with

$$q_{D/N}(u,u) \ge (c_a - \varepsilon) \|\nabla u\|_{L^2(\Omega)}^2 - C_{\varepsilon} \|u\|_{L^2(\Omega)}^2.$$

It is also closed, so that we obtain the self-adjoint operators $A_{D/N}$ from Theorem 2.4. They have compact resolvents and correspondingly, a discrete set of real eigenvalues tending to $+\infty$.

In order to determine the asymptotic of the respective counting functions of A from those of A^H , we compare the forms. The estimate

$$\left|\sum_{j=1}^{n} \int b^{j} \partial_{x_{j}} u \overline{u} + c u \overline{u} \, dx\right| \leq \varepsilon \|\nabla u\|_{L^{2}(\Omega)} + C_{\varepsilon} \|u\|^{2}$$

for arbitrary $\varepsilon > 0$ and suitable C_{ε} implies that, also for arbitrary $\varepsilon > 0$ and suitable C_{ε} ,

$$q_{D/N}(u,u) \leq (1+\varepsilon)q_{D/N}^{A^H}(u,u) + C_{\varepsilon} \|u\|_{L^2(\Omega)} \text{ and} q_{D/N}(u,u) \geq (1-\varepsilon)q_{D/N}^{A^H}(u,u) - C_{\varepsilon} \|u\|_{L^2(\Omega)}.$$

Since the forms $q_{D/N}$ and $q_{D/N}^{A^H}$ have the same domains, we infer from the minimax principle that

(1)
$$\lambda_k^{A_{D/N}} \leq (1+\varepsilon)\lambda_k^{A_{D/N}^H} + C_{\varepsilon} \text{ and}$$

(2)
$$\lambda_k^{A_D/N} \geq (1-\varepsilon)\lambda_k^{A_D^n/N} - C_{\varepsilon}.$$

Hence $\lambda_k^{A_{D/N}^H} \leq \lambda$ implies that $(1 - \varepsilon)\lambda_k^{A_{D/N}^H} - C_{\varepsilon} \leq \lambda$ which in turn shows that $\lambda_k^{A_{D/N}^H} \leq \frac{1}{1-\varepsilon}\lambda + \frac{C_{\varepsilon}}{1-\varepsilon}$. We conclude from (2) that

$$N_{A_{D/N}}(\lambda) \leq N_{A_{D/N}}\left(\frac{1}{1-\varepsilon}\lambda + \frac{C_{\varepsilon}}{1-\varepsilon}\right)$$

= $(\det a)^{-1/2}N_{-\Delta_{D/N}}\left(\frac{1}{1-\varepsilon}\lambda + \frac{C_{\varepsilon}}{1-\varepsilon}\right) + O\left(\left(\frac{1}{1-\varepsilon}\lambda + \frac{C_{\varepsilon}}{1-\varepsilon}\right)^{\frac{n-1}{2}}\right)$

Similarly, (1) implies that

$$N_{A_{D/N}}(\lambda) \geq N_{A_{D/N}}(\frac{1}{1+\varepsilon}\lambda - \frac{C_{\varepsilon}}{1+\varepsilon}) \\ = (\det a)^{-1/2} N_{-\Delta_{D/N}}\left(\frac{1}{1+\varepsilon}\lambda - \frac{C_{\varepsilon}}{1+\varepsilon}\right) + O\left(\left(\frac{1}{1+\varepsilon}\lambda - \frac{C_{\varepsilon}}{1+\varepsilon}\right)^{\frac{n-1}{2}}\right)$$

This implies the desired estimate: In fact, we know that $C_{\varepsilon} \leq C/\varepsilon$ for suitable C. Let $f : \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ be a function satisfying

$$f(\lambda) \ge (1-\varepsilon)\lambda^{n/2} - \frac{C}{\varepsilon}o(\lambda^{n/2}) \text{ and } f(\lambda) \le (1+\varepsilon)\lambda^{n/2} + \frac{C}{\varepsilon}o(\lambda^{n/2})$$

Suppose $\liminf_{\lambda\to\infty} f(\lambda)\lambda^{-n/2} - 1 < -\delta$ for some $\delta > 0$. Choosing $\varepsilon = \delta/2$ this would imply that for some sequence $\lambda^{(k)}$ we would have, for all k,

$$-\frac{\delta}{2} + \frac{2C}{\delta} (\lambda^{(k)})^{-1/2} < -\delta$$

which is not possible. In the same way we can treat $\limsup_{\lambda \to \infty} f(\lambda) \lambda^{-n/2} - 1$.

4.6. Variable coefficients, Dirichlet boundary conditions. Let Ω be open and contented. For the Dirichlet realization A_D of the operator A in 4.1 with variable coefficients we then have.

$$N_{A_D}(\lambda) = \frac{\operatorname{vol}_g \Omega \operatorname{vol} B(0,1)}{(2\pi)^n} \lambda^{n/2} + o(\lambda^{n/2}),$$

where $\operatorname{vol}_g \Omega$ is the volume of Ω measured in the Riemannian metric $g = a^{-1}$.

Proof. For fixed $m \in \mathbb{N}$ we next tile \mathbb{R}^n by the half-open intervals

$$I_{z} = \left[\frac{z_{1}d_{1}}{2^{m}}, \frac{(z_{1}+1)d_{1}}{2^{m}}\right) \times \left[\frac{z_{n}d_{n}}{2^{m}}, \frac{(z_{n}+1)d_{1}}{2^{m}}\right), \quad z = (z_{1}, \dots, z_{n}) \in \mathbb{Z}^{n}.$$

On each interval I_z consider the form

$$q_D(u,v) = \int_{I_z} \sum_{jk} a^{jk} \partial_{x_j} u \partial_{x_k} \overline{v} + \sum_{j=1}^n b^j \partial_{x_j} u \overline{v} + c u \overline{v} \, dx$$

with domain $W_0^{1,2}(I_z) \times W_0^{1,2}(I_z)$. This form is closed and semi-bounded by the same arguments as in the proof of 4.5. It defines a selfadjoint operator A_D with discrete real spectrum consisting of eigenvalues $\lambda_k^{A_D} j$ tending to ∞ .

Denote by x_z the midpoint of I_z . We can then compare the forms q_D with the constant coefficient forms

$$q_D^z(u,v) = \int_{I_z} \sum_{jk} a^{jk}(x_z) \partial_{x_j} u \partial_{x_k} \overline{v} + \sum_{j=1}^n b^j(x_z) \partial_{x_j} u \overline{v} + c(x_z) u \overline{v} \, dx$$

Let $\varepsilon > 0$ be given. By taking *m* large (and hence the diameter of the intervals small) we can achieve that, with suitable $C_{\varepsilon} > 0$,

$$q_D(u,u) \leq (1+\varepsilon)q_D^z(u,u) + C_{\varepsilon} \|u\|_{L^2(\Omega)} \text{ and} q_D(u,u) \geq (1-\varepsilon)q_D^z(u,u) - C_{\varepsilon} \|u\|_{L^2(\Omega)}.$$

As in the proof of 4.5 we conclude that the counting functions on each I_z satisfy

$$N_{A_D}(\lambda) \geq (1-\varepsilon)(\det a_z)^{-1/2}(2\pi)^{-n} \operatorname{vol} I_z \operatorname{vol} B(0,1)\lambda^{n/2} - C_{\varepsilon} \cdot o(\lambda^{n/2}) \quad \text{and} \quad N_{A_D}(\lambda) \leq (1+\varepsilon)(\det a_z)^{-1/2}(2\pi)^{-n} \operatorname{vol} I_z \operatorname{vol} B(0,1)\lambda^{n/2} + C_{\varepsilon} \cdot o(\lambda^{n/2})$$

where $a_c = (a^{jk}(x_z))_{jk}$. Dirichlet-Neumann bracketing and taking the limit as $m \to \infty$ then implies that

$$N_{A_D}(\lambda) = \int_{\Omega} (\det a(x))^{-1/2} dx \frac{volB(0,1)}{(2\pi)^n} \lambda^{n/2} + o(\lambda^{n/2}).$$

Finally we note that

$$\int_{\Omega} (\det a(x))^{-1/2} dx = \int_{\Omega} \sqrt{\det a(x)^{-1}} dx = \operatorname{vol}_g(\Omega)$$

for the Riemannian metric $g = a^{-1}$.

4.7. Remark. Second order operators on manifolds. Let Ω be a smooth manifold of dimension n, and let A be a strongly elliptic second order operator that locally is of the form in 4.1.

According to Whitehead [12] every smooth manifold admits a triangulation. For each simplicial set we can consider the corresponding operator on a simplex in \mathbb{R}^n . On the simplex, we can derive Weyl asymptotics as in 4.6 for the local operator.

I expect that, via Dirichlet-Neumann bracketing we then obtain the Weyl asymptotics on the manifold.

26