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4. GENERAL SECOND ORDER STRONGLY ELLIPTIC OPERATORS

4.1. Set-Up. Let 2 C R"” be bounded and open. We consider operators of the form

n

(1) A== d"@)0,,05, + > V()0 + c(x),

jk=1
where a/~* b7 and ¢ are continuous, real-valued functions, a/* = a*7 and
2 k
(2) cal€? <) o (2)&6k < Caléf?

with suitable constants ¢ and C.
We define the forms

(3) qD/N u,v) /Zaﬂ )0y, u(2) 0y, U(2 +Zb7 () + c(x)u(x)v(z) de

with domain WO’ (Q) x W01’2(Q) for g5 and WLQ(Q) x WH2(Q) for ¢§. By Theorem 2.4 they
furnish self-adjoint, positive operators Apy.

In a first step we will also assume that all coefficients are constant. Since a = (a?*) is real-
symmetric, we can write
a = s*ds,
where s is an orthogonal matrix and d is diagonal.
We start with the case of a diagonal operator

n
2 42
o Z dy,0z,
k=1
and denote by Dp/y the operators obtained from the corresponding restriction of the form (3).

4.2. Theorem. Let ) be a bounded, contented open set in R™. Then

NDD/N()\) = H dlzl N(—A)D/N()\)'
k=1

Proof. Fix r > 0. Following Theorem 3.1 we see that on the interval I,4 = [ ][0, rdj] the functions

——sin jkwk , j € N" and

\ = COS kxk ), JjeNy

form a complete set of eigenfunctions for the operators Dp and Dy, respectively. We have

Y72
1Y%

n j27['2
DDSj = Z%Sj,jENn
k=1
n .2 2
JET .
DNCJ' = Z ];2 Cj,]ENg.
k=1

For the counting functions we therefore obtain:

. J 22 . . r
Nop i) = {5+ 3 25 <ap = {5 I3l < ZVA} = Nayy (1)
k
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Here, N(_a), e (X\; 1) is the counting function of the Dirichlet/Neumann Laplacian on the cube

I, = [0,r]", which, as we know, satisfies

1 j—
Ni-a)pn (X Ira) = 2n)" vol(B(0,1))r" A2 + O((r?x) ("~ 1/2)

For fixed m € N we next tile R™ by the half-open intervals

[zlah (21 + 1)(11) o [ann (zn + 1)‘11)’ = (21,...,2n) € L™

2m ’ 2m 2m 2m
Just as for the Dirichlet/Neumann Laplacian we can then apply the Dirichlet-Neumann brack-
eting. The difference is that we have replaced the cubes of side length 27" by intervals of side
lengths 27™dy, k = 1,...,n. Their volume differs by a factor [] di from the cubes’ volume. The
number of intervals of the form I; needed to cover Q from the interior/exterior (in the sense of
the of the sets 2 in the proof of Theorem 3.14) therefore is [ | d,;l times the number of cubes.
This shows the assertion. O

4.3. Coordinate transforms. Let T : V — U be a diffeomorphism of open sets in R™ and let
A be a (differential) operator defined on, say C2°(V'). Then we obtain a (differential) operator
T.A on C°(U) by

(T Au)(z) = AU o T)(T" ).

For later use we compute the first and second order derivatives, assuming for the moment that
T is linear, writing T' = (tj,):

Oz, (uoT)(z) = O, (U(<Z tlm%n)z))

0o 7)) = 00, (00 (X ) Y1)
= Zn: (Oy, Oy, ) ((thm$m)l> j pk)

p,q=1
Thus

n

Oz, Oz, (u 0 T) (T 'z) = Z (Oy, Oy, u) (@)t q;tpk

p,q=1

Writing h for the Hessian matrix (hgp)gp = (0y, 0y, )qp, We obtain

axg 8061« - ( Z Z hqptqjtpk) (T*hT)jk-

g=1p=1

4.4. Example. We consider the principal part A of the operator A in 4.1 with constant
coefficients:
— Z ajk&,;j Oy, -
Jk

As in 4.1(3) we assume that a = s*ds for an orthogonal matrix s and a diagonal matrix d =
diag(d?,...,d%). We also suppose that the boundary of Q2 is C?.
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We derive from (4.3) that
s, AT = — Z al*(s*hs)jp = — Z a’® (s*hs) jx
gk Jk
= —Tr(as*hs) = — Tr(sas*h) = Tr(dh)
= = =) ;o2 =D
k

with the operator D defined in 4.1.
By Ag AL denote the self-adjoint, positive operators obtained from the forms

qp/n(u,v) = Z/Qajk&rjuaxkvdx
ik

with domains W01’2(Q) X Wol’z(Q) and W12(Q) x WH2(Q). respectively. These operators have
compact resolvent and therefore their spectrum consists of eigenvalues 0 < Ay — +00. Since the
boundary is C2, the operators Ag and A% act on their domains as the operator A,

Now we make the following observation: Suppose v is an eigenfunction for the eigenvalue A of
AH . Then u = vo s~ ! is an eigenfunction for the eigenvalue X of s, A

(s:AMu(z) = A (uo s)(s7(2)) = (ATv)(s7H(2)) = M(s™ (z)) = Mu().

Conversely, if u is an eigenfunction for the eigenvalue X of s, A¥ | then v = wos is an eigenfunction
for AH. Hence the spectra and also the counting function for A” and s,AY coincide. We
therefore obtain

1 1
NAg/N()\) = Ns*Ag/N(/\) =Np,,y(A) = meAD/N(/\) = EJ\LADW(A)-

4.5. The constant coefficient case. Assume Weyl asymptotics hold for the Dirchlet and the

Neumann Laplacian on 2. For the Dirichlet and Neumann realizations Ap/y of the operator A

in 4.1 with constant coefficients we have.

_12volQvol B(0, 1)
(2m)m

Nay,n(A) = (deta) A2 o(A2),

Proof. Consider the forms
qp/n(u,v) = /Q Z ajkﬁggju@xkﬁ + Z bjawjuﬁ + cuv dx
ik j=1

with domains W,2(92) x W, () and W12(Q) x W2(Q), respectively. These forms are semi-
bounded: For every j and every € > 0 there exists a C, such that

b 0y, uv < |67 |0y, uv] < |V|e] 0, ul* + Celu].

By assumption Zﬁk a’k §i&k > ca|€|? for some constant ¢, > 0. We deduce that, for every ¢ > 0,
we find a C., depending on ¢, b and ¢ with

qp/N(u,u) > (ca — 5)HVUH%2(Q) - CsHUH%Q(Q)‘

It is also closed, so that we obtain the self-adjoint operators Ap /y from Theorem 2.4. They have
compact resolvents and correspondingly, a discrete set of real eigenvalues tending to +oo.
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In order to determine the asymptotic of the respective counting functions of A from those of A7,
we compare the forms. The estimate

D / b0, it + cutide] < ]|Vl 2 + CeJu?
7j=1

for arbitrary € > 0 and suitable C. implies that, also for arbitrary ¢ > 0 and suitable C.,
H
ap/N(u,u) < (1T+ E)QS/N(%U) + Ccllull2()  and
H
QD/N(U7U) > (1- S)QS/N(U7U) - C€||UHL2(Q)-

Since the forms ¢p,y and qg;IN have the same domains, we infer from the minimax principle
that

(1) A (1+e)A. " +C. and

IN

AH
2) AP S (1A Y

AH AH AH
Hence A, PN < X implies that (1 — )\ P/N" _ C.. < X which in turn shows that AL PIN <
A+ Ce . We conclude from (2) that

1—¢
1 C
Nap,n(A) < NAD/N<17_5/\+ 1—65)
B 1 C 1 Ce \"7
= (deta) I/QN—AD/N(ZAJF1—65)+O<<1—5A+1—65) 2 )
Similarly, (1) implies that
1 C:
Nap,n(A) = NAD/N(TH _l—i—S)
- 1 C 1 C nrt
= (deta) 1/QJ\LAD/N(TMJ_1+E»s)+0(<1+eA_1+€6> )

This implies the desired estimate: In fact, we know that C. < C/e for suitable C. Let f : Ryg —
R~ be a function satisfying

FO) = (1—e)A/? - go(A"/Q) and f(A) < (1+e)A"? + go()\”/Q)

Suppose liminfy_o f(A)A/2 —1 < —§ for some § > 0. Choosing € = §/2 this would imply

that for some sequence A¥) we would have, for all k,

0 2C
_Z AEN-L/2 5
C+ S (0) ,
which is not possible. In the same way we can treat limsup, . f(AA™™2 — 1. O

4.6. Variable coefficients, Dirichlet boundary conditions. Let € be open and contented.
For the Dirichlet realization Ap of the operator A in 4.1 with variable coefficients we then have.

voly Qvol B(0, 1)
(2m)"
1

where vol, € is the volume of €2 measured in the Riemannian metric g =a™".

Na,(\) = A2 4 o(A2),

Proof. For fixed m € N we next tile R™ by the half-open intervals

z1d1 (Zl —i—l)dl Zndn (Zn—i-l)dl
gm ' gm )X[2m’ om )

I, = z2=(21,...,2n) EZ".
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On each interval I, consider the form

n
QD(U,U):/I Zajkﬁmjuaxki—i-ijﬁzjuﬁ—l—cuﬁdw
= gk j=1

with domain I/VO1 2(1 2) X I/VO1 ’2(1 2). This form is closed and semi-bounded by the same arguments
as in the proof of 4.5. It defines a selfadjoint operator Ap with discrete real spectrum consisting
of eigenvalues )\?D j tending to oo.

Denote by x, the midpoint of I,. We can then compare the forms gp with the constant coefficient
forms

n
@ (u,v) = / > (02) 00 udp, T+ YV (22) 05, ub + oz, )ub do
I g j=1
Let € > 0 be given. By taking m large (and hence the diameter of the intervals small) we can
achieve that, with suitable C. > 0,

qp(u,u) (1+e)gp(u, u) + Cellul| 2y and
qp(u,u) (1 —&)ap(u,u) — Cellullr2(q)-
As in the proof of 4.5 we conclude that the counting functions on each I, satisfy
Na,(A) > (1—e¢)(deta,) /2(2n) ™ vol I, vol B(0,1)A"2 — C. - o(A™?)  and
Na,(A) < (1+e¢)(deta,) 2(2r) " vol I, vol B(0,1)A\V? + C. - o(A™/?)

where a. = (a’*(z,));x. Dirichlet-Neumann bracketing and taking the limit as m — oo then
implies that

<
>

Na,(\) = /Q(deta(m))l/2 dvaéi;;l)A"/? + o(A™/?).

Finally we note that
/Q (deta(x))™ Y2 dx = /Q Vdet a(z) =t dz = vol, ()

for the Riemannian metric g = a ™. O

4.7. Remark. Second order operators on manifolds. Let 2 be a smooth manifold of
dimension n, and let A be a strongly elliptic second order operator that locally is of the form in
4.1.

According to Whitehead [12] every smooth manifold admits a triangulation. For each simplicial
set we can consider the corresponding operator on a simplex in R™. On the simplex, we can
derive Weyl asymptotics as in 4.6 for the local operator.

I expect that, via Dirichlet-Neumann bracketing we then obtain the Weyl asymptotics on the
manifold.



