
9

2. Operators and Forms

Let H be a complex Hilbert space with scalar product h·, ·i.

2.a. Selfadjoint operators defined from forms.

2.1. Definition. A quadratic form on H is a sesquilinear map

q : Q(q)⇥Q(q) ! C

where Q(q) is a dense subspace of H, called the form domain.
We call q

• symmetric, if q(u, v) = q(v, u),
• positive, if q(u, u) � 0 and
• semibounded, if q(u, u) � �ckuk2 for some c � 0.
• closed, if it is semibounded and Q(q) is closed under the norm

kuk+1 = (q(u, u) + (c+ 1)kuk2)1/2.
A semibounded form is necessarily symmetric by the polarization identity.

2.2. Lemma. (a) The norm k · k+1 is induced by the scalar product

(u, v)+1 = q(u, v) + (c+ 1)hu, vi.

(b) The following are equivalent for a semibounded form:

(i) q is closed
(ii) If (uk) is a sequence in Q(q) with uk ! u in H for some u and q(ul � uk, ul � uk) ! 0

as k, l ! 1, then u 2 Q(q) and q(u� uk, u� uk) ! 0.

Proof. (a) Obvious.
(b) The condition (ii) rephrases the fact that a Cauchy sequence with respect to k · k+1 has a
limit in Q(q). ⇤
2.3. Definition. A subset D of Q(q) which is dense with respect to the k · k+1-norm is called
a form core.

The following is the central theorem of this section:

2.4. Theorem. If q is a closed semibounded form, then there exists a unique selfadjoint
(unbounded) operator A such that

q(u, v) = hAu, vi, u, v 2 D(A).

Proof. Step 1: General considerations. Without loss of generality assume q is positive, i.e. c = 0.
Being semibounded, q is symmetric. The fact that q is closed then implies that H+1 = Q(q) is
a Hilbert space with respect to the scalar product

(·, ·)+1 = hu, vi+ q(u, v).

Denote by H�1 the space of all bounded conjugate-linear maps H+1 ! C. By Riesz’ representa-
tion theorem we have an isometric isomorphism

J : H+1 ! H�1 via (Ju)v = (u, v)+1.

The map j : u 7! hu, ·i defines an embedding H ,! H�1: In fact,

|j(u)(v)| = |hu, vi|  kukkvk  kukkvk+1.
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Since we have the natural injection H+1 ,! H we obtain the triple

H+1
id
,! H

j

,! H�1.

Step 2: Definition of the auxiliary operator A1. We let
D(A1) = {u 2 H+1 : 9v 2 H with Ju = jv 2 ran j} = J�1(ran j).

and define the action of A1 by A1u = v, i.e. A1 = j�1J . This makes sense in view of the
injectivity of j.
More explicitly: By definition (ju)(v) = hu, vi, or U(v) = hj�1U, vi for U 2 ran j, v 2 H+1. This
implies that

hA1u, vi = hj�1Ju, vi = (Ju)(v) = (u, v)+1, u 2 D(A1), v 2 H+1.

Step 3: Density of the domain. Let us first check that the range of j is dense in H�1. Suppose
it were not. Then the isometric isomorphism J : H+1 ! H�1 together with with Riesz’ theorem
shows that there exists a vector 0 6= v 2 H+1 such that

(J�1j(u), v) = 0, u 2 H.

By definition of J and j, we then obtain the contradiction v = 0, since
0 = (J�1j(u), v)+1 = j(u)(v) = hu, vi, u 2 H.

Hence ran j is dense in H�1. Since J is an isometry, D(A) is dense in H+1. Now the fact that
H+1 = Q(q) is dense in H by assumption and k · k  k · kH+1 implies that D(A) is dense in H.
Step 4: Symmetry. Let u, v 2 D(A1). By definition,

hA1u, vi = (u, v)+1 = hu, vi+ q(u, v) = hv, ui+ q(v, u)

= hA1v, ui = hu,A1vi.

Step 5: Selfadjointness. Let C = J�1j. By definition, C maps H to D(A1) = J�1j(H) and
satisfies A1C = IH , CA1 = ID(A1), i.e. A1 is the algebraic inverse of C : H ! D(A1). For
u, v 2 H, the symmetry of A1 implies that

hCu, vi = hCu,A1Cvi = hA1Cu,Cvi = hu,Cvi.
The theorem of Hellinger and Toeplitz then implies that C is bounded and selfadjoint.
In order to determine the domain of A⇤

1, we make two observations. The first is that V G(A1) =
G(�C), the second that, as a consequence of the selfadjointness of C, G(C) = V (G(C))?. We
therefore find that

G(A⇤
1) = V (G(A1))

? = G(�C)? = V (G(�C)) = G(A1).

Therefore A1 is selfadjoint.
Step 6: Conclusion. We let A = A1 � I with domain D(A) = D(A1). Then A is also selfadjoint
and

hAu, vi = hA1u, vi � hu, vi = (u, v)+1 � hu, vi = q(u, v),

so that A is the operator associated with the form q. ⇤

The following example shows that closedness is crucial.

2.5. Example. Let H = L2(R) and let q be the form

q(u, v) = u(0)v(0)

with domain Q(q) = C1
c (R). This is a positive form, but there is no unbounded densely defined

operator A on L2(R) such that
hAu, vi = u(0)v(0).
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In fact, suppose this were the case. Choose u 2 C1
c (R) with u(0) = 1. Then we find a sequence

(vk) in C1
c (R) with vk(0) = 1 and vk ! 0 in L2(R). This furnishes the contradiction

1 = u(0)vn(0)
?
= hAu, vni ! 0.

2.b. Weak derivatives and Sobolev spaces.

2.6. Definition. Let ⌦ be an open subset of Rn.
(a) Given u, v 2 L1

loc
(⌦) and a multi-index ↵, we say that v = @↵u, if
Z

⌦
u@↵' dx = (�1)|↵|

Z

⌦
v' dx, ' 2 C1

c (⌦).

(b) For k 2 N and 1  p  1, we define the Sobolev space

W k,p(⌦) = {u 2 Lp(⌦) : @↵u 2 Lp for all |↵|  k}.
If p = 2, one often omits the superscript p. We define a norm on W k,p(⌦) by

kukk,p =
X

|↵|k

k@↵ukp or, for p = 2 : kukk,2 =
⇣ X

|↵|k

k@↵uk22
⌘1/2

.

(c) W k,p

0 (⌦) denotes the closure of C1
c (⌦) in the topology of W k,p(⌦).

2.7. Theorem. W k,p(⌦) is a Banach space for 1  p  1 and a Hilbert space for p = 2. As
a closed subspace, W 1,p

0 (⌦) then also is a Hilbert space.

Proof. It remains to check completeness. Suppose that (uk) is a Cauchy sequence in W k,p.
Writing u↵

k
= @↵uk, this implies that (u↵

k
) are Cauchy sequences in Lp(⌦). In view of the

completeness of Lp, these sequences have limits u↵. We have to show that @↵u = u↵ (write
u0 = u) as this will imply that u 2 W k,p. To this end choose ' 2 C1

c (⌦). Then
Z

⌦
u@↵' dx = lim

k!1

Z

⌦
uk@

↵' dx = lim
k!1

(�1)↵
Z

⌦
u↵
k
' dx = (�1)↵

Z

⌦
u↵' dx,

which is the assertion. ⇤
2.8. Theorem. For 1  p < 1 abd bounded ⌦, the embedding W 1,p

0 (⌦) ,! Lp(⌦) is compact.

Proof. See Evans, [2, §5.7, Theorem 1 and Remark on p.274]. ⇤
2.9. Theorem. (Poincaré inequality, version 1) Let ⌦ be a bounded domain in Rn

(it is actually sufficient that ⌦ is bounded in one direction). Then there exists a constant
C = C(⌦, p) � 0 such that

kukLp  CkrukLp , u 2 W 1,p
0 (⌦).

Proof. Let ⌦ ✓ {|x1|  R}. Integration by parts yields for ' 2 C1
c (⌦):

k'kp
Lp =

Z

⌦
|'(x)|p1 dx = �

Z

⌦
@x1(|'(x)|p)x1 dx

 pR

Z

⌦
|@x1'(x)||'(x)|p�1 dx  pR k@x1'(x)kLpk |'(x)|p�1 k

Lp0(1)

Since p0 = p/(p� 1)

k |'(x)|p�1 k
Lp0 =

✓Z

⌦
|'(x)|(p�1) p

p�1

◆(p�1)/p

= k'kp�1
Lp .
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We thus obtain from (1)
k'kp  pR k@x1'kLp  pRkr'kLp .

Since C1
c (⌦) is dense in W 1,p

0 (⌦) by assumption, the assertion follows. ⇤
2.10. Theorem. (Poincaré inequality, version 2) Let ⌦ be a bounded domain in Rn with
C1 boundary, 1  p  1. Then there exists a constant C = C(⌦, p) � 0 such that

ku� u⌦kLp  CkrukLp , u 2 W 1,p(⌦),

where
u⌦ =

1

vol⌦

Z

⌦
u dx

is the average of u over ⌦.

Proof. See Evans, [2, §5.8, Theorem 1]. ⇤

2.c. The Dirichlet and Neumann problems. The Dirichlet problem is to find, for given
f 2 L2(⌦), a solution to the problem

�u = f in ⌦, u = 0 on @⌦.(1)

One also studies the Neumann problem, which requires to find, for given f 2 L2(⌦), a solution
to the problem

�u = f in ⌦, @⌫u = 0 on @⌦,(2)

where ⌫ is the exterior unit normal vector.
In these formulations, both problems require some regularity of the boundary. There is a way to
circumvent this, namely the concept of weak solutions.
We call u 2 W 1,2

0 (⌦) a weak solution of the Dirchlet problem (1), provided that
Z

⌦
hru,rviCn dx = �

Z

⌦
fv dx, v 2 W 1,2

0 (⌦).(3)

Similarly, u 2 W 1,2(⌦) is a weak solution of the Neumann problem (2), if
Z

⌦
hru,rviCn dx = �

Z

⌦
fv dx, v 2 W 1,2(⌦).(4)

In the language of forms, we can define

qD(u, v) =

Z

⌦
hru,rviCn dx, Q(qD) = W 1,2

0 (⌦)

qN (u, v) =

Z

⌦
hru,rviCn dx, Q(qN ) = W 1,2(⌦).

In fact, we have the same form with two different domains. The forms qD and qN are symmetric
and positive. Since (u, u)+1 = kukW 1,2 and both W 1,2

0 (⌦) and W 1,2(⌦) are complete with respect
to the associated norm, Theorem 2.4 applies. It furnishes two unbounded selfadjoint operators,
namely ��D and ��N , the Dirichlet and the Neumann Laplacian.
We can determine the domain of ��D further:

2.11. Theorem. D(��D) = W 1,2
0 (⌦)\{u 2 L2(⌦) : �u 2 L2(⌦)}. This is W 1,2

0 (⌦)\W 2,2(⌦),
if @⌦ is C2-regular.1

1C1,1
suffices, see Grisvard [4, Theorem 2.2.2.3].
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Proof. By the construction in Theorem 2.4 the domain of �D consists of those u 2 Q(qD) =
W 1,2

0 (⌦), for which Ju = jv for some v 2 H = L2(⌦). Explicitly this requires that
Z

⌦
hru,r'iCndx+

Z

⌦
u'dx =

Z

⌦
v'dx, ' 2 H+1 = W 1,2

0 (⌦).

This shows that the divergence of ru exists and equals u�v 2 L2, hence �u = divru 2 L2(⌦).
If the boundary is C2, then one can show that u 2 W 2,2(⌦), see Evans [2, §6.3, Theorem 4].
Conversely, for �u 2 L2(⌦) and u 2 W 1,2

0 (⌦) the above identity holds, since it is true for
' 2 C1

c (⌦) which is dense in W 1,2
0 (⌦) (apply Green’s formula for a smoothly bounded domain

in ⌦ containing supp'). ⇤
2.12. Remark. Similarly as in Theorem 2.11, the domain of the Neumann Laplacian consists
of all u 2 Q(qN ) = W 1,2(⌦), for which Ju = jv for some v 2 H = L2(⌦). Explicitly:

Z

⌦
hru,r'iCndx+

Z

⌦
u'dx =

Z

⌦
v'dx, ' 2 H+1 = W 1,2(⌦).

As before, we conclude that �u 2 L2(⌦), but in this case, the above equality poses an additional
restriction that is less obvious: If the boundary is smooth enough, Green’s formula reveals that
@⌫u = 0.
If @⌦ is of class C1,1, then [4, Theorem 2.2.2.5] implies that u 2 W 2,2(⌦).

Assumption. From now on assume that ⌦ is a bounded domain in Rn.

2.13. Remark. Apart from the boundedness of ⌦ we shall assume in the following theorems
that @⌦ satisfies a certain regularity condition. It is sufficient that ⌦ has Lipschitz boundary
or, slightly weaker, that it has the uniform cone property with finite cover, see [1, Section 4.4,
p. 66]. That guarantees that elements of W 1,2(⌦) can be extended to elements of the standard
Sobolev space H1(Rn), see Definition 4.4; this is the so-called Calderón extension theorem, see
[1, Theorem. 4.32]. As a consequence, the embedding W 1,2(⌦) ,! L2(⌦) is compact.

2.14. Theorem. The Dirichlet Laplacian ��D is a positive, invertible, selfadjoint operator on
L2(⌦). Its inverse is a compact, positive and selfadjoint operator on L2(⌦), whose spectrum is a
subset of R+ with only accumulation point 0. Apart from 0, all spectral values are eigenvalues
of finite multiplicity
The spectrum of ��D therefore consists of a sequence 0 = �1 < �2 < . . . ! 1 of eigenvalues of
finite multiplicity.

Proof. By construction, ��D is positive and selfadjoint; it satisfies

h��Du, vi = qD(u, v) =

Z

⌦
hru,rvi dx, u, v 2 W 1,2

0 (⌦).

We note that ��D is injective: ��Du = 0 implies that q(u, u) = 0 and hence, by version 2 of
Poincaré’s inequality, that u = 0 a.e..
Moreover, ��D has closed range: Suppose uk 2 W 1

0 (⌦) and (��Duk) is a Cauchy sequence in
L2. Then Poincaré’s inequality implies that

kuk � ulk2L2  Ckr(uk � ul)k2L2 = CqD(uk � ul, uk � ul) = Ch��D(uk � ul), uk � uli
 Ck�D(uk � ul)kL2kuk � ulkL2 .

Hence (uk) also is a Cauchy sequence in L2. It has a limit u 2 L2. Since ��D is closed,
u 2 D(��D) and lim�Duk ! �Du.
From this follows surjectivity: Suppose, ��D were not surjective. As the range is closed, we
could find 0 6= v 2 L2 such that h��Du, vi = 0 for all u 2 D(��D). This implies that v 2
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D(��⇤
D
) = D(��D). Choosing u := v we obtain from Poincaré’s inequality the contradiction

0 = h��Dv, vi = q(v, v) � kvk2 > 0.
So we know that ��D : D(��D) ✓ L2 ! L2 is positive, selfadjoint and invertible. Its inverse
is a bounded, positive and selfadjoint operator on L2.
It is even compact, since its range is D(��D) ✓ W 1,2

0 (⌦), and, by Theorem 2.8, W 1,2
0 (⌦) ,!

L2(⌦) is compact. The spectrum of a positive, selfadjoint compact operator is a subset {µ1 >
µ2 > . . .} [ {0} of R+ with only possible accumulation point zero. Apart from zero, all spectral
values are eigenvalues of finite multiplicity.
The spectrum of ��D then consists of the values µ�1

j
, j = 1, 2, . . . and therefore has the stated

properties. (Actually, we see just as above, that �jI ��D is not invertible if and only if it is not
injective; so all spectral values are eigenvalues and thus coincide with the µ�1

j
). ⇤

2.15. Theorem. The Neumann Laplacian ��N is a positive selfadjoint operator on L2(⌦).
Its spectrum consists of a sequence 0 = �1 < �2 < . . . ! 1 of eigenvalues of finite multiplicity.
Note that ��N is not invertible; it has a one-dimensional kernel.

Proof. Consider the scalar product q+1(u, v) = hu, vi+ qN (u, v) on W 1,2 ⇥W 1,2, which is asso-
ciated with the operator ��N + I. A similar, but simpler argument than that for ��D then
shows that I��N is invertible and selfadjoint. Its inverse is compact, since it maps into W 1,2(⌦)
which embeds compactly into L2(⌦). Hence the spectrum of I ��N consists of eigenvalues of
finite multiplicity; they tend to +1. In view of the fact that h(I��N )u, ui = q+1(u, u) � kuk2,
the eigenvalues of I ��N must be � 1.
It is clear that qN (c, c) = 0 for constant functions c, so that 1 is an eigenvalue. In order to see
that it is a simple eigenvalue note that q+1(u, u) = kuk2 implies that qN (u, u) = 0; hence u is
locally constant by version 2 of Poincaré’s inequality, applied to any ball in ⌦, thus constant,
since ⌦ is connected. Subtraction of the identity operator then implies the assertion. ⇤


