2. Operators and Forms

Let H be a complex Hilbert space with scalar product $\langle\cdot, \cdot\rangle$.

2.a. Selfadjoint operators defined from forms.

2.1. Definition. A quadratic form on H is a sesquilinear map

$$
q: Q(q) \times Q(q) \rightarrow \mathbb{C}
$$

where $Q(q)$ is a dense subspace of H, called the form domain.
We call q

- symmetric, if $q(u, v)=\overline{q(v, u)}$,
- positive, if $q(u, u) \geq 0$ and
- semibounded, if $q(u, u) \geq-c\|u\|^{2}$ for some $c \geq 0$.
- closed, if it is semibounded and $Q(q)$ is closed under the norm

$$
\|u\|_{+1}=\left(q(u, u)+(c+1)\|u\|^{2}\right)^{1 / 2} .
$$

A semibounded form is necessarily symmetric by the polarization identity.
2.2. Lemma. (a) The norm $\|\cdot\|_{+1}$ is induced by the scalar product

$$
(u, v)_{+1}=q(u, v)+(c+1)\langle u, v\rangle
$$

(b) The following are equivalent for a semibounded form:
(i) q is closed
(ii) If $\left(u_{k}\right)$ is a sequence in $Q(q)$ with $u_{k} \rightarrow u$ in H for some u and $q\left(u_{l}-u_{k}, u_{l}-u_{k}\right) \rightarrow 0$ as $k, l \rightarrow \infty$, then $u \in Q(q)$ and $q\left(u-u_{k}, u-u_{k}\right) \rightarrow 0$.

Proof. (a) Obvious.
(b) The condition (ii) rephrases the fact that a Cauchy sequence with respect to $\|\cdot\|_{+1}$ has a limit in $Q(q)$.
2.3. Definition. A subset \mathcal{D} of $Q(q)$ which is dense with respect to the $\|\cdot\|_{+1}$-norm is called a form core.

The following is the central theorem of this section:
2.4. Theorem. If q is a closed semibounded form, then there exists a unique selfadjoint (unbounded) operator A such that

$$
q(u, v)=\langle A u, v\rangle, \quad u, v \in \mathscr{D}(A)
$$

Proof. Step 1: General considerations. Without loss of generality assume q is positive, i.e. $c=0$. Being semibounded, q is symmetric. The fact that q is closed then implies that $H_{+1}=Q(q)$ is a Hilbert space with respect to the scalar product

$$
(\cdot, \cdot)_{+1}=\langle u, v\rangle+q(u, v) .
$$

Denote by H_{-1} the space of all bounded conjugate-linear maps $H_{+1} \rightarrow \mathbb{C}$. By Riesz' representation theorem we have an isometric isomorphism

$$
J: H_{+1} \rightarrow H_{-1} \operatorname{via}(J u) v=(u, v)_{+1}
$$

The map $j: u \mapsto\langle u, \cdot\rangle$ defines an embedding $H \hookrightarrow H_{-1}$: In fact,

$$
|j(u)(v)|=|\langle u, v\rangle| \leq\|u\|\|v\| \leq\|u\|\|v\|_{+1}
$$

Since we have the natural injection $H_{+1} \hookrightarrow H$ we obtain the triple

$$
H_{+1} \stackrel{\text { id }}{\hookrightarrow} H \stackrel{j}{\hookrightarrow} H_{-1} .
$$

Step 2: Definition of the auxiliary operator A_{1}. We let

$$
\mathscr{D}\left(A_{1}\right)=\left\{u \in H_{+1}: \exists v \in H \text { with } J u=j v \in \operatorname{ran} j\right\}=J^{-1}(\operatorname{ran} j) .
$$

and define the action of A_{1} by $A_{1} u=v$, i.e. $A_{1}=j^{-1} J$. This makes sense in view of the injectivity of j.
More explicitly: By definition $(j u)(v)=\langle u, v\rangle$, or $U(v)=\left\langle j^{-1} U, v\right\rangle$ for $U \in \operatorname{ran} j, v \in H_{+1}$. This implies that

$$
\left\langle A_{1} u, v\right\rangle=\left\langle j^{-1} J u, v\right\rangle=(J u)(v)=(u, v)_{+1}, \quad u \in \mathscr{D}\left(A_{1}\right), v \in H_{+1} .
$$

Step 3: Density of the domain. Let us first check that the range of j is dense in H_{-1}. Suppose it were not. Then the isometric isomorphism $J: H_{+1} \rightarrow H_{-1}$ together with with Riesz' theorem shows that there exists a vector $0 \neq v \in H_{+1}$ such that

$$
\left(J^{-1} j(u), v\right)=0, u \in H .
$$

By definition of J and j, we then obtain the contradiction $v=0$, since

$$
0=\left(J^{-1} j(u), v\right)_{+1}=j(u)(v)=\langle u, v\rangle, u \in H .
$$

Hence $\operatorname{ran} j$ is dense in H_{-1}. Since J is an isometry, $\mathscr{D}(A)$ is dense in H_{+1}. Now the fact that $H_{+1}=Q(q)$ is dense in H by assumption and $\|\cdot\| \leq\|\cdot\|_{H_{+1}}$ implies that $\mathscr{D}(A)$ is dense in H. Step 4: Symmetry. Let $u, v \in \mathscr{D}\left(A_{1}\right)$. By definition,

$$
\begin{aligned}
\left\langle A_{1} u, v\right\rangle & =\frac{(u, v)_{+1}}{}=\langle u, v\rangle+q(u, v)=\overline{\langle v, u\rangle+q(v, u)} \\
& =\overline{\left\langle A_{1} v, u\right\rangle}=\left\langle u, A_{1} v\right\rangle .
\end{aligned}
$$

Step 5: Selfadjointness. Let $C=J^{-1} j$. By definition, C maps H to $\mathscr{D}\left(A_{1}\right)=J^{-1} j(H)$ and satisfies $A_{1} C=I_{H}, C A_{1}=I_{\mathscr{D}\left(A_{1}\right)}$, i.e. A_{1} is the algebraic inverse of $C: H \rightarrow \mathscr{D}\left(A_{1}\right)$. For $u, v \in H$, the symmetry of A_{1} implies that

$$
\langle C u, v\rangle=\left\langle C u, A_{1} C v\right\rangle=\left\langle A_{1} C u, C v\right\rangle=\langle u, C v\rangle .
$$

The theorem of Hellinger and Toeplitz then implies that C is bounded and selfadjoint.
In order to determine the domain of A_{1}^{*}, we make two observations. The first is that $V \mathcal{G}\left(A_{1}\right)=$ $\mathcal{G}(-C)$, the second that, as a consequence of the selfadjointness of $C, \mathcal{G}(C)=V(\mathcal{G}(C))^{\perp}$. We therefore find that

$$
\mathcal{G}\left(A_{1}^{*}\right)=V\left(\mathcal{G}\left(A_{1}\right)\right)^{\perp}=\mathcal{G}(-C)^{\perp}=V(\mathcal{G}(-C))=\mathcal{G}\left(A_{1}\right) .
$$

Therefore A_{1} is selfadjoint.
Step 6: Conclusion. We let $A=A_{1}-I$ with domain $\mathscr{D}(A)=\mathscr{D}\left(A_{1}\right)$. Then A is also selfadjoint and

$$
\langle A u, v\rangle=\left\langle A_{1} u, v\right\rangle-\langle u, v\rangle=(u, v)_{+1}-\langle u, v\rangle=q(u, v),
$$

so that A is the operator associated with the form q.
The following example shows that closedness is crucial.
2.5. Example. Let $H=L^{2}(\mathbb{R})$ and let q be the form

$$
q(u, v)=u(0) \overline{v(0)}
$$

with domain $Q(q)=C_{c}^{\infty}(\mathbb{R})$. This is a positive form, but there is no unbounded densely defined operator A on $L^{2}(\mathbb{R})$ such that

$$
\langle A u, v\rangle=u(0) \overline{v(0)} .
$$

In fact, suppose this were the case. Choose $u \in C_{c}^{\infty}(\mathbb{R})$ with $u(0)=1$. Then we find a sequence $\left(v_{k}\right)$ in $C_{c}^{\infty}(\mathbb{R})$ with $v_{k}(0)=1$ and $v_{k} \rightarrow 0$ in $L^{2}(\mathbb{R})$. This furnishes the contradiction

$$
1=u(0) \overline{v_{n}(0)} \stackrel{?}{=}\left\langle A u, v_{n}\right\rangle \rightarrow 0
$$

2.b. Weak derivatives and Sobolev spaces.

2.6. Definition. Let Ω be an open subset of \mathbb{R}^{n}.
(a) Given $u, v \in L_{l o c}^{1}(\Omega)$ and a multi-index α, we say that $v=\partial^{\alpha} u$, if

$$
\int_{\Omega} u \partial^{\alpha} \varphi d x=(-1)^{|\alpha|} \int_{\Omega} v \varphi d x, \quad \varphi \in C_{c}^{\infty}(\Omega) .
$$

(b) For $k \in \mathbb{N}$ and $1 \leq p \leq \infty$, we define the Sobolev space

$$
W^{k, p}(\Omega)=\left\{u \in L^{p}(\Omega): \partial^{\alpha} u \in L^{p} \text { for all }|\alpha| \leq k\right\} .
$$

If $p=2$, one often omits the superscript p. We define a norm on $W^{k, p}(\Omega)$ by

$$
\|u\|_{k, p}=\sum_{|\alpha| \leq k}\left\|\partial^{\alpha} u\right\|_{p} \text { or, for } p=2:\|u\|_{k, 2}=\left(\sum_{|\alpha| \leq k}\left\|\partial^{\alpha} u\right\|_{2}^{2}\right)^{1 / 2} .
$$

(c) $W_{0}^{k, p}(\Omega)$ denotes the closure of $C_{c}^{\infty}(\Omega)$ in the topology of $W^{k, p}(\Omega)$.
2.7. Theorem. $W^{k, p}(\Omega)$ is a Banach space for $1 \leq p \leq \infty$ and a Hilbert space for $p=2$. As a closed subspace, $W_{0}^{1, p}(\Omega)$ then also is a Hilbert space.

Proof. It remains to check completeness. Suppose that $\left(u_{k}\right)$ is a Cauchy sequence in $W^{k, p}$. Writing $u_{k}^{\alpha}=\partial^{\alpha} u_{k}$, this implies that $\left(u_{k}^{\alpha}\right)$ are Cauchy sequences in $L^{p}(\Omega)$. In view of the completeness of L^{p}, these sequences have limits u^{α}. We have to show that $\partial^{\alpha} u=u^{\alpha}$ (write $u^{0}=u$) as this will imply that $u \in W^{k, p}$. To this end choose $\varphi \in C_{c}^{\infty}(\Omega)$. Then

$$
\int_{\Omega} u \partial^{\alpha} \varphi d x=\lim _{k \rightarrow \infty} \int_{\Omega} u_{k} \partial^{\alpha} \varphi d x=\lim _{k \rightarrow \infty}(-1)^{\alpha} \int_{\Omega} u_{k}^{\alpha} \varphi d x=(-1)^{\alpha} \int_{\Omega} u^{\alpha} \varphi d x
$$

which is the assertion.
2.8. Theorem. For $1 \leq p<\infty$ abd bounded Ω, the embedding $W_{0}^{1, p}(\Omega) \hookrightarrow L^{p}(\Omega)$ is compact.

Proof. See Evans, [2, §5.7, Theorem 1 and Remark on p.274].
2.9. Theorem. (Poincaré inequality, version 1) Let Ω be a bounded domain in \mathbb{R}^{n} (it is actually sufficient that Ω is bounded in one direction). Then there exists a constant $C=C(\Omega, p) \geq 0$ such that

$$
\|u\|_{L^{p}} \leq C\|\nabla u\|_{L^{p}}, \quad u \in W_{0}^{1, p}(\Omega)
$$

Proof. Let $\Omega \subseteq\left\{\left|x_{1}\right| \leq R\right\}$. Integration by parts yields for $\varphi \in C_{c}^{\infty}(\Omega)$:

$$
\begin{align*}
& \|\varphi\|_{L^{p}}^{p}=\int_{\Omega}|\varphi(x)|^{p} 1 d x=-\int_{\Omega} \partial_{x_{1}}\left(|\varphi(x)|^{p}\right) x_{1} d x \\
& \quad \leq\left.\quad p R \int_{\Omega}\left|\partial_{x_{1}} \varphi(x)\left\|\left.\varphi(x)\right|^{p-1} d x \leq p R\right\| \partial_{x_{1}} \varphi(x)\left\|_{L^{p}}\right\|\right| \varphi(x)\right|^{p-1} \|_{L^{p^{\prime}}} \tag{1}
\end{align*}
$$

Since $p^{\prime}=p /(p-1)$

$$
\left\||\varphi(x)|^{p-1}\right\|_{L^{p^{\prime}}}=\left(\int_{\Omega}|\varphi(x)|^{(p-1) \frac{p}{p-1}}\right)^{(p-1) / p}=\|\varphi\|_{L^{p}}^{p-1}
$$

We thus obtain from (1)

$$
\|\varphi\|_{p} \leq p R\left\|\partial_{x_{1}} \varphi\right\|_{L^{p}} \leq p R\|\nabla \varphi\|_{L^{p}}
$$

Since $C_{c}^{\infty}(\Omega)$ is dense in $W_{0}^{1, p}(\Omega)$ by assumption, the assertion follows.
2.10. Theorem. (Poincaré inequality, version 2) Let Ω be a bounded domain in \mathbb{R}^{n} with C^{1} boundary, $1 \leq p \leq \infty$. Then there exists a constant $C=C(\Omega, p) \geq 0$ such that

$$
\left\|u-u_{\Omega}\right\|_{L^{p}} \leq C\|\nabla u\|_{L^{p}}, \quad u \in W^{1, p}(\Omega)
$$

where

$$
u_{\Omega}=\frac{1}{\operatorname{vol} \Omega} \int_{\Omega} u d x
$$

is the average of u over Ω.
Proof. See Evans, [2, §5.8, Theorem 1].
2.c. The Dirichlet and Neumann problems. The Dirichlet problem is to find, for given $f \in L^{2}(\Omega)$, a solution to the problem

$$
\begin{equation*}
\Delta u=f \text { in } \Omega, \quad u=0 \text { on } \partial \Omega . \tag{1}
\end{equation*}
$$

One also studies the Neumann problem, which requires to find, for given $f \in L^{2}(\Omega)$, a solution to the problem

$$
\begin{equation*}
\Delta u=f \text { in } \Omega, \quad \partial_{\nu} u=0 \text { on } \partial \Omega \tag{2}
\end{equation*}
$$

where ν is the exterior unit normal vector.
In these formulations, both problems require some regularity of the boundary. There is a way to circumvent this, namely the concept of weak solutions.
We call $u \in W_{0}^{1,2}(\Omega)$ a weak solution of the Dirchlet problem (1), provided that

$$
\begin{equation*}
\int_{\Omega}\langle\nabla u, \nabla v\rangle_{\mathbb{C}^{n}} d x=-\int_{\Omega} f \bar{v} d x, \quad v \in W_{0}^{1,2}(\Omega) \tag{3}
\end{equation*}
$$

Similarly, $u \in W^{1,2}(\Omega)$ is a weak solution of the Neumann problem (2), if

$$
\begin{equation*}
\int_{\Omega}\langle\nabla u, \nabla v\rangle_{\mathbb{C}^{n}} d x=-\int_{\Omega} f \bar{v} d x, \quad v \in W^{1,2}(\Omega) \tag{4}
\end{equation*}
$$

In the language of forms, we can define

$$
\begin{aligned}
q_{D}(u, v) & =\int_{\Omega}\langle\nabla u, \nabla v\rangle_{\mathbb{C}^{n}} d x,
\end{aligned} \begin{aligned}
& \\
& q_{N}(u, v)
\end{aligned}=\int_{D}\langle\nabla u, \nabla v\rangle_{\mathbb{C}^{n}} d x, \quad Q\left(q_{N}\right)=W^{1,2}(\Omega)
$$

In fact, we have the same form with two different domains. The forms q_{D} and q_{N} are symmetric and positive. Since $(u, u)_{+1}=\|u\|_{W^{1,2}}$ and both $W_{0}^{1,2}(\Omega)$ and $W^{1,2}(\Omega)$ are complete with respect to the associated norm, Theorem 2.4 applies. It furnishes two unbounded selfadjoint operators, namely $-\Delta_{D}$ and $-\Delta_{N}$, the Dirichlet and the Neumann Laplacian.
We can determine the domain of $-\Delta_{D}$ further:
2.11. Theorem. $\mathscr{D}\left(-\Delta_{D}\right)=W_{0}^{1,2}(\Omega) \cap\left\{u \in L^{2}(\Omega): \Delta u \in L^{2}(\Omega)\right\}$. This is $W_{0}^{1,2}(\Omega) \cap W^{2,2}(\Omega)$, if $\partial \Omega$ is C^{2}-regular. ${ }^{1}$

[^0]Proof. By the construction in Theorem 2.4 the domain of Δ_{D} consists of those $u \in Q\left(q_{D}\right)=$ $W_{0}^{1,2}(\Omega)$, for which $J u=j v$ for some $v \in H=L^{2}(\Omega)$. Explicitly this requires that

$$
\int_{\Omega}\langle\nabla u, \nabla \varphi\rangle_{\mathbb{C}^{n}} d x+\int_{\Omega} u \bar{\varphi} d x=\int_{\Omega} v \bar{\varphi} d x, \quad \varphi \in H_{+1}=W_{0}^{1,2}(\Omega) .
$$

This shows that the divergence of ∇u exists and equals $u-v \in L^{2}$, hence $\Delta u=\operatorname{div} \nabla u \in L^{2}(\Omega)$. If the boundary is C^{2}, then one can show that $u \in W^{2,2}(\Omega)$, see Evans [2, §6.3, Theorem 4]. Conversely, for $\Delta u \in L^{2}(\Omega)$ and $u \in W_{0}^{1,2}(\Omega)$ the above identity holds, since it is true for $\varphi \in C_{c}^{\infty}(\Omega)$ which is dense in $W_{0}^{1,2}(\Omega)$ (apply Green's formula for a smoothly bounded domain in Ω containing $\operatorname{supp} \varphi$).
2.12. Remark. Similarly as in Theorem 2.11, the domain of the Neumann Laplacian consists of all $u \in Q\left(q_{N}\right)=W^{1,2}(\Omega)$, for which $J u=j v$ for some $v \in H=L^{2}(\Omega)$. Explicitly:

$$
\int_{\Omega}\langle\nabla u, \nabla \varphi\rangle_{\mathbb{C}^{n}} d x+\int_{\Omega} u \bar{\varphi} d x=\int_{\Omega} v \bar{\varphi} d x, \quad \varphi \in H_{+1}=W^{1,2}(\Omega) .
$$

As before, we conclude that $\Delta u \in L^{2}(\Omega)$, but in this case, the above equality poses an additional restriction that is less obvious: If the boundary is smooth enough, Green's formula reveals that $\partial_{\nu} u=0$.
If $\partial \Omega$ is of class $C^{1,1}$, then [4, Theorem 2.2.2.5] implies that $u \in W^{2,2}(\Omega)$.
Assumption. From now on assume that Ω is a bounded domain in \mathbb{R}^{n}.
2.13. Remark. Apart from the boundedness of Ω we shall assume in the following theorems that $\partial \Omega$ satisfies a certain regularity condition. It is sufficient that Ω has Lipschitz boundary or, slightly weaker, that it has the uniform cone property with finite cover, see [1, Section 4.4, p. 66]. That guarantees that elements of $W^{1,2}(\Omega)$ can be extended to elements of the standard Sobolev space $H^{1}\left(\mathbb{R}^{n}\right)$, see Definition 4.4 ; this is the so-called Calderón extension theorem, see [1, Theorem. 4.32]. As a consequence, the embedding $W^{1,2}(\Omega) \hookrightarrow L^{2}(\Omega)$ is compact.
2.14. Theorem. The Dirichlet Laplacian $-\Delta_{D}$ is a positive, invertible, selfadjoint operator on $L^{2}(\Omega)$. Its inverse is a compact, positive and selfadjoint operator on $L^{2}(\Omega)$, whose spectrum is a subset of $\overline{\mathbb{R}}_{+}$with only accumulation point 0 . Apart from 0 , all spectral values are eigenvalues of finite multiplicity
The spectrum of $-\Delta_{D}$ therefore consists of a sequence $0=\lambda_{1}<\lambda_{2}<\ldots \rightarrow \infty$ of eigenvalues of finite multiplicity.

Proof. By construction, $-\Delta_{D}$ is positive and selfadjoint; it satisfies

$$
\left\langle-\Delta_{D} u, v\right\rangle=q_{D}(u, v)=\int_{\Omega}\langle\nabla u, \overline{\nabla v}\rangle d x, \quad u, v \in W_{0}^{1,2}(\Omega)
$$

We note that $-\Delta_{D}$ is injective: $-\Delta_{D} u=0$ implies that $q(u, u)=0$ and hence, by version 2 of Poincaré's inequality, that $u=0$ a.e..
Moreover, $-\Delta_{D}$ has closed range: Suppose $u_{k} \in W_{0}^{1}(\Omega)$ and $\left(-\Delta_{D} u_{k}\right)$ is a Cauchy sequence in L^{2}. Then Poincaré's inequality implies that

$$
\begin{aligned}
\left\|u_{k}-u_{l}\right\|_{L^{2}}^{2} & \leq C\left\|\nabla\left(u_{k}-u_{l}\right)\right\|_{L^{2}}^{2}=C q_{D}\left(u_{k}-u_{l}, u_{k}-u_{l}\right)=C\left\langle-\Delta_{D}\left(u_{k}-u_{l}\right), u_{k}-u_{l}\right\rangle \\
& \leq C\left\|\Delta_{D}\left(u_{k}-u_{l}\right)\right\|_{L^{2}}\left\|u_{k}-u_{l}\right\|_{L^{2}} .
\end{aligned}
$$

Hence $\left(u_{k}\right)$ also is a Cauchy sequence in L^{2}. It has a limit $u \in L^{2}$. Since $-\Delta_{D}$ is closed, $u \in \mathscr{D}\left(-\Delta_{D}\right)$ and $\lim \Delta_{D} u_{k} \rightarrow \Delta_{D} u$.
From this follows surjectivity: Suppose, $-\Delta_{D}$ were not surjective. As the range is closed, we could find $0 \neq v \in L^{2}$ such that $\left\langle-\Delta_{D} u, v\right\rangle=0$ for all $u \in \mathscr{D}\left(-\Delta_{D}\right)$. This implies that $v \in$
$\mathscr{D}\left(-\Delta_{D}^{*}\right)=\mathscr{D}\left(-\Delta_{D}\right)$. Choosing $u:=v$ we obtain from Poincaré's inequality the contradiction $0=\left\langle-\Delta_{D} v, v\right\rangle=q(v, v) \geq\|v\|^{2}>0$.
So we know that $-\Delta_{D}: \mathscr{D}\left(-\Delta_{D}\right) \subseteq L^{2} \rightarrow L^{2}$ is positive, selfadjoint and invertible. Its inverse is a bounded, positive and selfadjoint operator on L^{2}.
It is even compact, since its range is $\mathscr{D}\left(-\Delta_{D}\right) \subseteq W_{0}^{1,2}(\Omega)$, and, by Theorem 2.8, $W_{0}^{1,2}(\Omega) \hookrightarrow$ $L^{2}(\Omega)$ is compact. The spectrum of a positive, selfadjoint compact operator is a subset $\left\{\mu_{1}>\right.$ $\left.\mu_{2}>\ldots\right\} \cup\{0\}$ of $\overline{\mathbb{R}}_{+}$with only possible accumulation point zero. Apart from zero, all spectral values are eigenvalues of finite multiplicity.
The spectrum of $-\Delta_{D}$ then consists of the values $\mu_{j}^{-1}, j=1,2, \ldots$ and therefore has the stated properties. (Actually, we see just as above, that $\lambda_{j} I-\Delta_{D}$ is not invertible if and only if it is not injective; so all spectral values are eigenvalues and thus coincide with the μ_{j}^{-1}).
2.15. Theorem. The Neumann Laplacian $-\Delta_{N}$ is a positive selfadjoint operator on $L^{2}(\Omega)$. Its spectrum consists of a sequence $0=\lambda_{1}<\lambda_{2}<\ldots \rightarrow \infty$ of eigenvalues of finite multiplicity.
Note that $-\Delta_{N}$ is not invertible; it has a one-dimensional kernel.
Proof. Consider the scalar product $q_{+1}(u, v)=\langle u, v\rangle+q_{N}(u, v)$ on $W^{1,2} \times W^{1,2}$, which is associated with the operator $-\Delta_{N}+I$. A similar, but simpler argument than that for $-\Delta_{D}$ then shows that $I-\Delta_{N}$ is invertible and selfadjoint. Its inverse is compact, since it maps into $W^{1,2}(\Omega)$ which embeds compactly into $L^{2}(\Omega)$. Hence the spectrum of $I-\Delta_{N}$ consists of eigenvalues of finite multiplicity; they tend to $+\infty$. In view of the fact that $\left\langle\left(I-\Delta_{N}\right) u, u\right\rangle=q_{+1}(u, u) \geq\|u\|^{2}$, the eigenvalues of $I-\Delta_{N}$ must be ≥ 1.
It is clear that $q_{N}(c, c)=0$ for constant functions c, so that 1 is an eigenvalue. In order to see that it is a simple eigenvalue note that $q_{+1}(u, u)=\|u\|^{2}$ implies that $q_{N}(u, u)=0$; hence u is locally constant by version 2 of Poincaré's inequality, applied to any ball in Ω, thus constant, since Ω is connected. Subtraction of the identity operator then implies the assertion.

[^0]: ${ }^{1} C^{1,1}$ suffices, see Grisvard [4, Theorem 2.2.2.3].

