2. OPERATORS AND FORMS

Let H be a complex Hilbert space with scalar product (-, -).

2.a. Selfadjoint operators defined from forms.

2.1. Definition. A quadratic form on H is a sesquilinear map

q:Q(q) xQ(q) = C
where Q(q) is a dense subspace of H, called the form domain.
We call g

symmetric, if q(u,v) = q(v,u),

positive, if g(u,u) > 0 and

semibounded, if q(u,u) > —c||lu|? for some ¢ > 0.

closed, if it is semibounded and Q(q) is closed under the norm

lull+1 = (g(u,w) + (c+ 1)ul*)'/2.
A semibounded form is necessarily symmetric by the polarization identity.
2.2. Lemma. (a) The norm || - ||+1 is induced by the scalar product
(u,v)41 = q(u, v) + (¢ + 1)(u, v).
(b) The following are equivalent for a semibounded form:

(i) ¢ is closed
(ii) If (ug) is a sequence in Q(q) with ux, — u in H for some u and q(u; — ug,u; — ug) — 0
as k,l — oo, then u € Q(q) and q(u — ug,u — ug) — 0.

Proof. (a) Obvious.

(b) The condition (ii) rephrases the fact that a Cauchy sequence with respect to || - [|+1 has a
limit in Q(q). O

2.3. Definition. A subset D of Q(q) which is dense with respect to the || - ||+1-norm is called
a form core.

The following is the central theorem of this section:

2.4. Theorem. If q is a closed semibounded form, then there exists a unique selfadjoint
(unbounded) operator A such that

q(u,v) = (Au,v), u,v € P(A).
Proof. Step 1: General considerations. Without loss of generality assume g is positive, i.e. ¢ = 0.

Being semibounded, ¢ is symmetric. The fact that ¢ is closed then implies that Hi1 = Q(q) is
a Hilbert space with respect to the scalar product

('v ')+l = <uvv> + Q(u’v)'

Denote by H_; the space of all bounded conjugate-linear maps H; — C. By Riesz’ representa-
tion theorem we have an isometric isomorphism

J:Hip — H_y via (Ju)v = (u,v)41.
The map j : u > (u,-) defines an embedding H < H_;: In fact,

7 () ()] = [(u, v)| < [Jullllv]] < lulllo]l+1-
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Since we have the natural injection Hy; — H we obtain the triple
Ho S HS H
Step 2: Definition of the auxiliary operator A1. We let
P(A)) ={u € Hyy : v € H with Ju = ju €ranj} = J (ran ).
and define the action of A; by Aju = v, i.e. Ay = j7'J. This makes sense in view of the
injectivity of j.
More explicitly: By definition (ju)(v) = (u,v), or U(v) = (71U, v) for U € ranj, v € Hy;. This
implies that
(Ayu,v) = (G Tu,v) = (Ju)(v) = (u,v) 11, u€ D(A1),v € Hyy.
Step 3: Density of the domain. Let us first check that the range of j is dense in H_;. Suppose
it were not. Then the isometric isomorphism J : H;; — H_; together with with Riesz’ theorem
shows that there exists a vector 0 # v € H4q such that
(J7Yj(u),v) =0,u € H.
By definition of J and j, we then obtain the contradiction v = 0, since
0= (J_lj(u)’ U)+1 = ](u)(v) = <U,U>, ue H.
Hence ran j is dense in H_;. Since J is an isometry, Z(A) is dense in H;1. Now the fact that
Hy1 = Q(q) is dense in H by assumption and || - || < || - ||z, implies that Z(A) is dense in H.
Step 4: Symmetry. Let u,v € Z(A;). By definition,
<A1u7 U) - (U, ’U)+1 = <U, ’U> + q(u, U) - <’U, u> + CI(’U, U)
= (Ayv,u) = (u, Ayv).
Step 5: Selfadjointness. Let C = J~1j. By definition, C maps H to 2(A;) = J~'j(H) and
satisfies A1C = Iy, CAy = Iga,), i.e. Ap is the algebraic inverse of C : H — P(A;). For
u,v € H, the symmetry of A; implies that
(Cu,v) = (Cu, A1 Cv) = (A1Cu, Cv) = (u, Cv).
The theorem of Hellinger and Toeplitz then implies that C' is bounded and selfadjoint.
In order to determine the domain of A}, we make two observations. The first is that VG(A;) =
G(—C), the second that, as a consequence of the selfadjointness of C, G(C) = V(G(C))*. We
therefore find that
G(A}) = V(G(A1)" = G(=0)" = V(G(-0)) = G(A).
Therefore Ay is selfadjoint.

Step 6: Conclusion. We let A = Ay — I with domain Z(A) = Z(A;1). Then A is also selfadjoint
and

(Au,v) = (A1u,v) — (u,v) = (u,v)41 — (u,v) = q(u,v),
so that A is the operator associated with the form gq. ]

The following example shows that closedness is crucial.

2.5. Example. Let H = L?(R) and let ¢ be the form

q(u,v) = u(0)v(0)
with domain Q(q) = C2°(R). This is a positive form, but there is no unbounded densely defined
operator A on L?(R) such that

(Au,v) = u(0)v(0).
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In fact, suppose this were the case. Choose u € C2°(R) with «(0) = 1. Then we find a sequence
(vg) in C2°(R) with v(0) = 1 and vy — 0 in L?(R). This furnishes the contradiction

1 = u(0)vn(0) = (Au, v,) — 0.

2.b. Weak derivatives and Sobolev spaces.

2.6. Definition. Let € be an open subset of R™.

1
loc

(a)  Given u,v € Ly () and a multi-index «, we say that v = 0%, if

/ uwdp dz = (—1) / vpdr, @€ CF(Q).
Q Q
(b) For k€ Nand 1 < p < oo, we define the Sobolev space
WEP(Q) = {u € LP(Q) : 0%u € LP for all |a| < k}.
If p = 2, one often omits the superscript p. We define a norm on W¥*?(Q) by
1/2
lulley = > 0%ull or, for p=2: flulliz = (> 9°ul3) "
|| <k lo| <k
(c) Wéc’p(Q) denotes the closure of C°(9) in the topology of W*P(Q).

2.7. Theorem. Wk’p(Q) is a Banach space for 1 < p < oo and a Hilbert space for p = 2. As
a closed subspace, W&’p(Q) then also is a Hilbert space.

Proof. 1t remains to check completeness. Suppose that (ug) is a Cauchy sequence in Wk,

Writing uff = 0%uy, this implies that (uf) are Cauchy sequences in LP(Q2). In view of the

completeness of LP, these sequences have limits u®. We have to show that 0%u = u® (write
u® = w) as this will imply that « € W*P. To this end choose ¢ € C2°(2). Then

/uaagpd:p: lim /ukaacpdm: lim (—1)0‘/ uppdr = (—l)a/ u®pdz,
Q k—o0 Q 9]

k—o00 9]

which is the assertion. OJ

2.8. Theorem. For1l <p < oo abd bounded 2, the embedding Wol’p(Q) — LP(Q) is compact.

Proof. See Evans, (2, §5.7, Theorem 1 and Remark on p.274|. O

2.9. Theorem. (Poincaré inequality, version 1) Let £ be a bounded domain in R™
(it is actually sufficient that Q is bounded in one direction). Then there exists a constant
C =C(Q,p) >0 such that

lullr < C|Vulze, ue WaP(Q).

Proof. Let Q C {|z1] < R}. Integration by parts yields for ¢ € C°(Q):

ol = /Q o(@)P1dz = — /Q O (@) )1 da

(1) < pR/Qlaxlw(ﬂf)HsO(fv)lp_ldxSpRllazlsO(fC)llell (@) P~

Since p' = p/(p — 1)
» \ (P—1/p
@) Pl = ( / \so<x>|<”‘”p—l> — gl
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We thus obtain from (1)
lelly < PROw olle < pRIVe] L.

Since C2°(2) is dense in VVO1 P(Q) by assumption, the assertion follows. O

2.10. Theorem. (Poincaré inequality, version 2) Let €2 be a bounded domain in R™ with
C' boundary, 1 < p < co. Then there exists a constant C' = C(£,p) > 0 such that

lu—uallr < ClIVullir, uweW(Q),

where

1
uQ =~ /Qudac

is the average of u over €.

Proof. See Evans, (2, §5.8, Theorem 1]. O
2.c. The Dirichlet and Neumann problems. The Dirichlet problem is to find, for given
f € L*(Q), a solution to the problem

(1) Au=fin Q, wu=0on 0.

One also studies the Neumann problem, which requires to find, for given f € L?(f2), a solution
to the problem

(2) Au=finQ, 0,u=0on 09,

where v is the exterior unit normal vector.

In these formulations, both problems require some regularity of the boundary. There is a way to
circumvent this, namely the concept of weak solutions.

We call u € VVO1 () a weak solution of the Dirchlet problem (1), provided that

(3) /Q<Vu,Vv>(cn dr = — /Q fude, veW,? ().
Similarly, u € W12(Q) is a weak solution of the Neumann problem (2), if
(4) /Q<Vu, Vu)en dx = — /Q fode, veWh(Q).
In the language of forms, we can define

gp(u,v) = /Q<Vu,Vv>@n dz, Q(gp) = WOI’2(Q)

gy (u,v) = /Q<Vu,Vv>(cn dz, Q(qn)=WhH(Q).

In fact, we have the same form with two different domains. The forms gp and ¢y are symmetric
and positive. Since (u,u)4+1 = ||u|ly1,2 and both Wol’z(Q) and W12(Q) are complete with respect
to the associated norm, Theorem 2.4 applies. It furnishes two unbounded selfadjoint operators,
namely —Ap and —Ap, the Dirichlet and the Neumann Laplacian.

We can determine the domain of —Ap further:

2.11. Theorem. Z(—Ap)=W,*(Q)N{u € L*(Q) : Au € L*(Q)}. This is Wy *(Q)NW22(1),
if O is C%-regular.!

Lot suffices, see Grisvard [4, Theorem 2.2.2.3).
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Proof. By the construction in Theorem 2.4 the domain of Ap consists of those u € Q(qp) =
WO1 2(€2), for which Ju = juv for some v € H = L2(). Explicitly this requires that

/(Vu,Vg0>(cndx+/ updr = / vpdr, @€ Hiy = W01’2(Q).
Q Q Q

This shows that the divergence of Vu exists and equals u —v € L?, hence Au = divVu € L(Q).
If the boundary is C?, then one can show that u € W?22(Q), see Evans [2, §6.3, Theorem 4].
Conversely, for Au € L?(Q) and u € Wol’Q(Q) the above identity holds, since it is true for

p € C°(Q) which is dense in VVO1 2(Q) (apply Green’s formula for a smoothly bounded domain
in ) containing supp ¢). O

2.12. Remark. Similarly as in Theorem 2.11, the domain of the Neumann Laplacian consists
of all u € Q(qn) = W12(Q), for which Ju = jv for some v € H = L?(Q). Explicitly:

/(Vu,Vgo}Cndx—i—/ updxr = / vpdr, @€ Hiy = Wh?(Q).
Q Q Q

As before, we conclude that Au € L2(Q), but in this case, the above equality poses an additional
restriction that is less obvious: If the boundary is smooth enough, Green’s formula reveals that
d,u=0.

If 9Q is of class C!, then [4, Theorem 2.2.2.5] implies that u € W2((Q).

Assumption. From now on assume that () is a bounded domain in R".

2.13. Remark. Apart from the boundedness of €2 we shall assume in the following theorems
that 0€) satisfies a certain regularity condition. It is sufficient that {2 has Lipschitz boundary
or, slightly weaker, that it has the uniform cone property with finite cover, see [1, Section 4.4,
p. 66]. That guarantees that elements of W12(Q) can be extended to elements of the standard
Sobolev space H!(R"), see Definition 4.4; this is the so-called Calderén extension theorem, see
[1, Theorem. 4.32]. As a consequence, the embedding W2(Q) — L?(Q) is compact.

2.14. Theorem. The Dirichlet Laplacian —Ap is a positive, invertible, selfadjoint operator on
L?(Y). Its inverse is a compact, positive and selfadjoint operator on L?(§2), whose spectrum is a
subset of R, with only accumulation point 0. Apart from 0, all spectral values are eigenvalues
of finite multiplicity

The spectrum of —Ap therefore consists of a sequence 0 = Ay < Ao < ... — 00 of eigenvalues of
finite multiplicity.

Proof. By construction, —Ap is positive and selfadjoint; it satisfies

(—Apu,v) = qp(u,v) :/(Vu,Vv) dr, wu,v € W01’2(Q).
Q

We note that —Ap is injective: —Apu = 0 implies that g(u,u) = 0 and hence, by version 2 of
Poincaré’s inequality, that u = 0 a.e..

Moreover, —Ap has closed range: Suppose uy, € Wi (Q) and (—Apuy) is a Cauchy sequence in
L?. Then Poincaré’s inequality implies that

lug —wllz: < ClIV(uk = w)ll72 = Cap(u, — w,u, — w) = C{=Ap(uy — w), u, — w)
< Cl|Ap(ur — w)l|p2lluk — wll 2.

Hence (uy) also is a Cauchy sequence in L?. It has a limit u € L2 Since —Ap is closed,
u € P(—Ap) and lim Apux, — Apu.

From this follows surjectivity: Suppose, —Ap were not surjective. As the range is closed, we
could find 0 # v € L? such that (—Apu,v) = 0 for all u € Z(—Ap). This implies that v €



14

2(-A}) = 2(—Ap). Choosing u := v we obtain from Poincaré’s inequality the contradiction
0= (=Apv,v) = q(v,v) > [[v]* > 0.

So we know that —Ap : 2(—Ap) C L? — L? is positive, selfadjoint and invertible. Its inverse
is a bounded, positive and selfadjoint operator on L2.

It is even compact, since its range is Z(—Ap) C Wol’2((2), and, by Theorem 2.8, Wol’2((2) —
L?(€2) is compact. The spectrum of a positive, selfadjoint compact operator is a subset {u; >
po > ...} U{0} of Ry with only possible accumulation point zero. Apart from zero, all spectral
values are eigenvalues of finite multiplicity.

The spectrum of —Ap then consists of the values u;l, 7 =1,2,... and therefore has the stated
properties. (Actually, we see just as above, that AjI — Ap is not invertible if and only if it is not
injective; so all spectral values are eigenvalues and thus coincide with the ,ujfl). O

2.15. Theorem. The Neumann Laplacian —Ay is a positive selfadjoint operator on L?(Q).
Its spectrum consists of a sequence 0 = A1 < Ay < ... — oo of eigenvalues of finite multiplicity.

Note that — Ay is not invertible; it has a one-dimensional kernel.

Proof. Consider the scalar product qy1(u,v) = (u,v) + qn(u,v) on W2 x W2 which is asso-
ciated with the operator —Ax + I. A similar, but simpler argument than that for —Ap then
shows that I — Ay is invertible and selfadjoint. Its inverse is compact, since it maps into W12(Q)
which embeds compactly into L?(£2). Hence the spectrum of I — Ay consists of eigenvalues of
finite multiplicity; they tend to +oo. In view of the fact that ((I — Ax)u,u) = q1(u,u) > |jul?,
the eigenvalues of I — Ay must be > 1.

It is clear that gn(c,c¢) = 0 for constant functions ¢, so that 1 is an eigenvalue. In order to see
that it is a simple eigenvalue note that q,1(u,u) = ||ul|?> implies that qy(u,u) = 0; hence u is
locally constant by version 2 of Poincaré’s inequality, applied to any ball in €2, thus constant,
since {2 is connected. Subtraction of the identity operator then implies the assertion. O



