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1. Background on Functional Analysis

We start by recalling a few basics from any course on Functional Analysis. Suitable sources for
this material are the books of D. Werner [9] or W. Rudin [7] (more advanced) or my course notes
on Functional Analysis.
Let H,H1, H2 be Hilbert spaces. We write generically h·, ·i for the scalar product.
All statements in this section that do not directly involve the Hilbert space structure actually
also hold in the Banach space setting.

1.a. Bounded and compact operators, spectra.

1.1. Definition. We call a linear operator A : H1 ! H2 bounded and write A 2 L(H1, H2), if
there exists a constant C � 0 such that

kAxk  Ckxk, x 2 H1.

1.2. Lemma. For linear operators, boundedness is equivalent to continuity.

1.3. Theorem. (Riesz representation theorem). For every continuous linear functional
F : H ! C there exists precisely one element vF 2 H such that

F (u) = hu, vF i.
This provides an isometric conjugate-linear map from L(H,C) to H.
Equivalently, we find for every continuous conjugate-linear map G : H ! C precisely one element
vG such that

G(u) = hvG, ui.
This furnishes an isometric isomorphism from the space of conjugate-linear functionals on H to
H.

1.4. Theorem. (Closed graph theorem) Let A : H1 ! H2 be a linear operator. Then A is
continuous if and only if the graph of A, i.e. the set {(x,Ax) : x 2 H1}, is closed in H1 ⇥H2.
In other words: A is bounded, if and only if for every sequence (xk) in H1 with xk ! 0 in H1

and Axk ! y in H2, we have y = 0.

1.5. Theorem. (Hellinger-Toeplitz) Let A : H ! H be a linear operator satisfying
hAx, yi = hx,Ayi, x, y 2 H.

Then A is continuous.

Proof. Assume that xk ! 0 and Axk ! z. Then we have for all y 2 H:
hz, yi = limhAxk, yi = limhxk, Ayi = 0.

Hence z = 0 and the closed graph theorem implies the assertion. ⇤
1.6. Definition. We call K 2 L(H1, H2) compact, if it maps bounded sets into compact sets.
Write K 2 K(H1, H2).
We say that H1 is compactly embedded in H2, if the identity operator I : H1 ! H2 is compact.

1.7. Remark.
(a) Since closed subsets of compact subsets of Banach spaces are compact, we can rephrase

this in several ways:
• If M ⇢ H1 is bounded, then the closure K(H1) ⇢ H2 is compact.
• The closure of the image of the unit ball K(B(0, 1) is compact.
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• If (xk)k is a bounded sequence in H1, then (Kxk)k has a convergent subsequence.
(b) K(H1, H2) is a closed subspace of L(H1, H2).
(c) The closed unit ball in a Banach space is compact if and only if its dimension is finite. As

a consequence, every operator of finite rank is compact.
(d) If K is compact, A and B are bounded, then AK and KB are compact.

1.8. Definition. The spectrum ���(A) of an operator A 2 L(H) is the set of all � 2 C such that
�I �A : E ! E is not bijective. The complement C \ ���(A) is called the resolvent of A.

1.9. Theorem.

(a) The spectrum of a bounded linear operator A 2 L(H) is a nonempty compact subset of
C. Conversely, every nonempty compact subset of C arises as the spectrum of a bounded
linear operator.

(b) If A 2 L(H1, H2) is bijective, then A�1 2 L(H2, H1) (automatic continuity of the inverse).

1.10. Theorem. Let K 2 K(H). Then ���(K) is a bounded, discrete subset of C with only
possible accumulation point 0. If dimH = 1, then 0 2 ���(K). Except for 0, all points in ���(K)
are eigenvalues of finite multiplicity.

1.11. Theorem. Given a linear operator A 2 L(H) there exists a unique operator A⇤ 2 L(H)
such that

hAx, yi = hx,A⇤yi, x, y 2 H.

Furthermore kA⇤k = kAk.
We call A selfadjoint if A⇤ = A. In this case we have

kAk = max{|�| : � 2 ���(A)}.

1.b. Unbounded operators.

1.12. Definition. An unbounded linear operator is a linear map T : D(T ) ✓ H ! H. The
subspace D(T ) is called the domain of T . When speaking of unbounded operators we will always
assume linearity.
The operator T : D(T ) ! H is closed, if the graph of T , i.e. the set

G(T ) = {(x, Tx) : x 2 D(T )}
is a closed subset of H ⇥H.

1.13. Lemma. We can endow D(T ) with the norm kxkT = kxk + kTx}. If T is closed, then
(D(T ), k · kT ) is a Banach space, and

T : (D(T ), k · kT ) ! T

is a bounded linear operator. In this sense, closedness is a substitute for boundedness.

Proof. Clearly, k · kT is a norm. If (xk) is a Cauchy sequence in (D(T ), k · kT ), then (xk) is a
Cauchy sequence in H thus has a limit x, and (Txk) is a Cauchy sequence in H and has a limit y.
Thus (x, y) is the limit of a sequence in the graph of T . Since the graph is closed, (x, y) 2 G(T ).
We conclude that xk ! x 2 (D(T ), k · kT ), so that this space is complete. Now the closed graph
theorem implies the boundedness of T in this setting.

1.14. Definition. The operator T : D(T ) ⇢ H ! H is invertible, if there exists an operator
Q 2 L(H) with range D(T ) such that TQ = IH and QT = ID(T ). The spectrum of T is the set
of all � 2 C for which T � �I is not invertible. The complement of the spectrum is called the
resolvent (set).
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1.15. Remark. (a) The spectrum always is a closed subset of C, and every closed subset arises
as the spectrum of an unbounded operator.
(b) If T is not closed, then ���(T ) = C.

1.16. Definition. We call T : D(T ) ! H closable, if there exists a closed extension of T , i.e.
an operator bT with domain D( bT ) ◆ D(T ) such that bT|D(T ) = T . In this case we call the smallest
closed extension the closure of T and denote it by T .

1.17. Lemma. The following are equivalent for an unbounded operator T with domain D(T ):
(a) T is closable.
(b) The closure G(T ) of the graph is the graph of an operator T

(c) If (xk) is a sequence in D(T ) with xk ! 0 and Txk ! y, then y = 0.
In this case, the closure T is defined by

D(T ) = {x 2 H : 9(xk) ⇢ D(T ) such that xk ! x and Txk ! yfor some y in H}.(1)

Proof. (a) ) (b): If T is the closure of T , then G(T ) is the graph of T .
(b) ) (c): Follows from the fact that T0 = 0.
(c) ) (a): Define D(T ) by (1) and let Tx = y whenever (x, y) is the limit of a sequence (xk, Txk)
with xk 2 D(T ).
This makes sense: If (xk, Txk) ! (x, y) and (x̃k, T x̃k) ! (x, ỹ), then xk � x̃k ! 0 and T (xk �
x̃k) ! y � ỹ, so that, by assumption, y = ỹ. Moreover, it defines a linear operator. By
construction, its graph is closed. ⇤
1.18. Definition. Let T be closed. We call a subset C of D(T ) a core for T , if T|C = T .

1.19. Definition. Let T : D(T ) ! H be densely defined.
(a) T is called symmetric, if

hTx, yi = hx, Tyi, x, y 2 D(T ).

(b) The adjoint T ⇤ of an unbounded operator T is defined on the set
D(T ⇤) = {x 2 H : 9z 2 H s.t. hx, Tyi = hz, yi, y 2 D(T )}.

In this notation one lets T ⇤x = z.
(c) T is called selfadjoint if D(T ⇤) = D(T ) and T = T ⇤ on D(T ).
(d) T is called essentially selfadjoint if its closure is selfadjoint.

1.20. Remark. (a) We need that T is densely defined in order to have a unique z in 1.19(b).
(b) ‘Symmetric’ and ‘selfadjoint’ are different notions. If T is symmetric, then D(T ) ✓ D(T ⇤),
so that T ⇤ is an extension of T . In general, however, a symmetric operator might not have a
selfadjoint extension.

1.21. Theorem. Let T be densely defined. Then
(a) T ⇤ is closed.
(b) T is closable, if and only if D(T ⇤) is dense in H. In this case, T = T ⇤⇤.
(c) If T is closable, then (T )⇤ = T ⇤.

Proof. Define a scalar product on H ⇥H by
((x, y), (u, v)) = hx, ui+ hy, vi

and a map
V : H ⇥H ! H ⇥H by V (x, y) = (�y, x).
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Then V 2 = �I and for every subspace U of H ⇥H

V (U?) = V (U)?.(1)
(a) Note that

(u, v) 2 V (G(T ))? , hu,�Txi+ hv, xi = 0 8x 2 D(T )

, hu, Txi = hv, xi 8x 2 D(T )

, (u, v) 2 G(T ⇤)

Hence
G(T ⇤) = V (G(T ))?(2)

which is a closed subset of H ⇥H.
(b) We have M = (M?)? for every subspace M of a Hilbert space. Hence we always have

G(T ) = (G(T )?)? V
2=�I
= (V 2(G(T )?))? (1)

= (V (V (G(T )))?)? (3)
= V (G(T ⇤))?.(3)

So, if T ⇤ is densely defined, we can apply Equation (2) of (a) and find that G(T ) = G(T ⇤⇤).
Conversely, suppose that T is closable, but D(T ⇤) is not dense in H. Then we find 0 6= y 2
D(T ⇤)?. This implies that (y, 0) 2 G(T ⇤)?. Hence

(0, y) 2 V (G(T ⇤)?)
(1)
= V (G(T ⇤))?

(3)
= G(T ) (1.17)(b)

= G(T ).
This is a contradiction, since a linear operator maps zero to zero and y 6= 0.

(c) If T is closable, then T ⇤ (a)
= T ⇤ (b)

= T ⇤⇤⇤ = T
⇤. ⇤


