We start by recalling a few basics from any course on Functional Analysis. Suitable sources for this material are the books of D. Werner [9] or W. Rudin [7] (more advanced) or my course notes on Functional Analysis.

Let H, H_1, H_2 be Hilbert spaces. We write generically $\langle \cdot, \cdot \rangle$ for the scalar product.

All statements in this section that do not directly involve the Hilbert space structure actually also hold in the Banach space setting.

1.a. Bounded and compact operators, spectra.

1.1. Definition. We call a linear operator $A : H_1 \to H_2$ bounded and write $A \in \mathcal{L}(H_1, H_2)$, if there exists a constant $C \ge 0$ such that

$$||Ax|| \le C ||x||, x \in H_1$$

1.2. Lemma. For linear operators, boundedness is equivalent to continuity.

1.3. Theorem. (Riesz representation theorem). For every continuous linear functional $F: H \to \mathbb{C}$ there exists precisely one element $v_F \in H$ such that

$$F(u) = \langle u, v_F \rangle.$$

This provides an isometric conjugate-linear map from $\mathcal{L}(H, \mathbb{C})$ to H. Equivalently, we find for every continuous conjugate-linear map $G : H \to \mathbb{C}$ precisely one element v_G such that

$$G(u) = \langle v_G, u \rangle.$$

This furnishes an isometric isomorphism from the space of conjugate-linear functionals on H to H.

1.4. Theorem. (Closed graph theorem) Let $A : H_1 \to H_2$ be a linear operator. Then A is continuous if and only if the graph of A, i.e. the set $\{(x, Ax) : x \in H_1\}$, is closed in $H_1 \times H_2$. In other words: A is bounded, if and only if for every sequence (x_k) in H_1 with $x_k \to 0$ in H_1 and $Ax_k \to y$ in H_2 , we have y = 0.

1.5. Theorem. (Hellinger-Toeplitz) Let $A: H \to H$ be a linear operator satisfying

$$\langle Ax, y \rangle = \langle x, Ay \rangle, x, y \in H.$$

Then A is continuous.

Proof. Assume that $x_k \to 0$ and $Ax_k \to z$. Then we have for all $y \in H$:

$$\langle z, y \rangle = \lim \langle Ax_k, y \rangle = \lim \langle x_k, Ay \rangle = 0.$$

Hence z = 0 and the closed graph theorem implies the assertion.

1.6. Definition. We call $K \in \mathcal{L}(H_1, H_2)$ compact, if it maps bounded sets into compact sets. Write $K \in \mathcal{K}(H_1, H_2)$.

We say that H_1 is compactly embedded in H_2 , if the identity operator $I: H_1 \to H_2$ is compact.

1.7. Remark.

- (a) Since closed subsets of compact subsets of Banach spaces are compact, we can rephrase this in several ways:
 - If $M \subset H_1$ is bounded, then the closure $\overline{K(H_1)} \subset H_2$ is compact.
 - The closure of the image of the unit ball $\overline{K(B(0,1))}$ is compact.

• If $(x_k)_k$ is a bounded sequence in H_1 , then $(Kx_k)_k$ has a convergent subsequence.

- (b) $\mathcal{K}(H_1, H_2)$ is a closed subspace of $\mathcal{L}(H_1, H_2)$.
- (c) The closed unit ball in a Banach space is compact if and only if its dimension is finite. As a consequence, every operator of finite rank is compact.
- (d) If K is compact, A and B are bounded, then AK and KB are compact.

1.8. Definition. The spectrum $\boldsymbol{\sigma}(A)$ of an operator $A \in \mathcal{L}(H)$ is the set of all $\lambda \in \mathbb{C}$ such that $\lambda I - A : E \to E$ is not bijective. The complement $\mathbb{C} \setminus \boldsymbol{\sigma}(A)$ is called the resolvent of A.

1.9. Theorem.

- (a) The spectrum of a bounded linear operator $A \in \mathcal{L}(H)$ is a nonempty compact subset of \mathbb{C} . Conversely, every nonempty compact subset of \mathbb{C} arises as the spectrum of a bounded linear operator.
- (b) If $A \in \mathcal{L}(H_1, H_2)$ is bijective, then $A^{-1} \in \mathcal{L}(H_2, H_1)$ (automatic continuity of the inverse).

1.10. Theorem. Let $K \in \mathcal{K}(H)$. Then $\sigma(K)$ is a bounded, discrete subset of \mathbb{C} with only possible accumulation point 0. If dim $H = \infty$, then $0 \in \sigma(K)$. Except for 0, all points in $\sigma(K)$ are eigenvalues of finite multiplicity.

1.11. Theorem. Given a linear operator $A \in \mathcal{L}(H)$ there exists a unique operator $A^* \in \mathcal{L}(H)$ such that

$$\langle Ax, y \rangle = \langle x, A^*y \rangle, \quad x, y \in H.$$

Furthermore $||A^*|| = ||A||$.

We call A selfadjoint if $A^* = A$. In this case we have

$$||A|| = \max\{|\lambda| : \lambda \in \boldsymbol{\sigma}(A)\}.$$

1.b. Unbounded operators.

1.12. Definition. An unbounded linear operator is a linear map $T : \mathscr{D}(T) \subseteq H \to H$. The subspace $\mathscr{D}(T)$ is called the domain of T. When speaking of unbounded operators we will always assume linearity.

The operator $T: \mathscr{D}(T) \to H$ is *closed*, if the graph of T, i.e. the set

$$\mathcal{G}(T) = \{(x, Tx) : x \in \mathscr{D}(T)\}$$

is a closed subset of $H \times H$.

1.13. Lemma. We can endow $\mathscr{D}(T)$ with the norm $||x||_T = ||x|| + ||Tx|$. If T is closed, then $(\mathscr{D}(T), ||\cdot||_T)$ is a Banach space, and

$$T: (\mathscr{D}(T), \|\cdot\|_T) \to T$$

is a bounded linear operator. In this sense, closedness is a substitute for boundedness.

Proof. Clearly, $\|\cdot\|_T$ is a norm. If (x_k) is a Cauchy sequence in $(\mathscr{D}(T), \|\cdot\|_T)$, then (x_k) is a Cauchy sequence in H thus has a limit x, and (Tx_k) is a Cauchy sequence in H and has a limit y. Thus (x, y) is the limit of a sequence in the graph of T. Since the graph is closed, $(x, y) \in \mathcal{G}(T)$. We conclude that $x_k \to x \in (\mathscr{D}(T), \|\cdot\|_T)$, so that this space is complete. Now the closed graph theorem implies the boundedness of T in this setting.

1.14. Definition. The operator $T : \mathscr{D}(T) \subset H \to H$ is *invertible*, if there exists an operator $Q \in \mathcal{L}(H)$ with range $\mathscr{D}(T)$ such that $TQ = I_H$ and $QT = I_{\mathscr{D}(T)}$. The *spectrum* of T is the set of all $\lambda \in \mathbb{C}$ for which $T - \lambda I$ is not invertible. The complement of the spectrum is called the *resolvent (set)*.

1.15. Remark. (a) The spectrum always is a closed subset of \mathbb{C} , and every closed subset arises as the spectrum of an unbounded operator.

(b) If T is not closed, then $\boldsymbol{\sigma}(T) = \mathbb{C}$.

1.16. Definition. We call $T : \mathscr{D}(T) \to H$ closable, if there exists a closed extension of T, i.e. an operator \widehat{T} with domain $\mathscr{D}(\widehat{T}) \supseteq \mathscr{D}(T)$ such that $\widehat{T}_{|\mathscr{D}(T)} = T$. In this case we call the smallest closed extension the *closure* of T and denote it by \overline{T} .

1.17. Lemma. The following are equivalent for an unbounded operator T with domain $\mathscr{D}(T)$: (a) T is closable.

(b) The closure $\overline{\mathcal{G}(T)}$ of the graph is the graph of an operator \overline{T}

(c) If (x_k) is a sequence in $\mathscr{D}(T)$ with $x_k \to 0$ and $Tx_k \to y$, then y = 0.

In this case, the closure \overline{T} is defined by

(1) $\mathscr{D}(\overline{T}) = \{x \in H : \exists (x_k) \subset \mathscr{D}(T) \text{ such that } x_k \to x \text{ and } Tx_k \to y \text{ for some } y \text{ in } H\}.$

Proof. (a) \Rightarrow (b): If \overline{T} is the closure of T, then $\overline{\mathcal{G}(T)}$ is the graph of \overline{T} .

(b) \Rightarrow (c): Follows from the fact that $\overline{T}0 = 0$.

(c) \Rightarrow (a): Define $\mathscr{D}(\overline{T})$ by (1) and let $\overline{T}x = y$ whenever (x, y) is the limit of a sequence (x_k, Tx_k) with $x_k \in \mathscr{D}(T)$.

This makes sense: If $(x_k, Tx_k) \to (x, y)$ and $(\tilde{x}_k, T\tilde{x}_k) \to (x, \tilde{y})$, then $x_k - \tilde{x}_k \to 0$ and $T(x_k - \tilde{x}_k) \to y - \tilde{y}$, so that, by assumption, $y = \tilde{y}$. Moreover, it defines a linear operator. By construction, its graph is closed.

1.18. Definition. Let T be closed. We call a subset \mathscr{C} of $\mathscr{D}(T)$ a *core* for T, if $\overline{T_{|\mathscr{C}}} = T$.

1.19. Definition. Let $T : \mathscr{D}(T) \to H$ be densely defined. (a) *T* is called *symmetric*, if

$$\langle Tx, y \rangle = \langle x, Ty \rangle, \quad x, y \in \mathscr{D}(T).$$

(b) The *adjoint* T^* of an unbounded operator T is defined on the set

$$\mathscr{D}(T^*) = \{ x \in H : \exists z \in H \text{ s.t. } \langle x, Ty \rangle = \langle z, y \rangle, y \in \mathscr{D}(T) \}.$$

In this notation one lets $T^*x = z$.

(c) T is called *selfadjoint* if $\mathscr{D}(T^*) = \mathscr{D}(T)$ and $T = T^*$ on $\mathscr{D}(T)$.

(d) T is called *essentially selfadjoint* if its closure is selfadjoint.

1.20. Remark. (a) We need that T is densely defined in order to have a unique z in 1.19(b). (b) 'Symmetric' and 'selfadjoint' are different notions. If T is symmetric, then $\mathscr{D}(T) \subseteq \mathscr{D}(T^*)$, so that T^* is an extension of T. In general, however, a symmetric operator might not have a selfadjoint extension.

1.21. Theorem. Let T be densely defined. Then

(a) T^* is closed.

(b) T is closable, if and only if $\mathscr{D}(T^*)$ is dense in H. In this case, $\overline{T} = T^{**}$.

(c) If T is closable, then $(\overline{T})^* = T^*$.

Proof. Define a scalar product on $H \times H$ by

$$((x,y),(u,v)) = \langle x,u \rangle + \langle y,v \rangle$$

and a map

$$V: H \times H \to H \times H$$
 by $V(x, y) = (-y, x)$.

8

Then $V^2 = -I$ and for every subspace U of $H \times H$

(1)
$$V(U^{\perp}) = V(U)^{\perp}.$$

(a) Note that

$$(u,v) \in V(\mathcal{G}(T))^{\perp} \iff \langle u, -Tx \rangle + \langle v, x \rangle = 0 \ \forall x \in \mathscr{D}(T)$$
$$\Leftrightarrow \langle u, Tx \rangle = \langle v, x \rangle \ \forall x \in \mathscr{D}(T)$$
$$\Leftrightarrow (u,v) \in \mathcal{G}(T^*)$$

Hence

(2)
$$\mathcal{G}(T^*) = V(\mathcal{G}(T))^{\perp}$$

which is a closed subset of $H \times H$.

(b) We have $\overline{M} = (M^{\perp})^{\perp}$ for every subspace M of a Hilbert space. Hence we always have

(3)
$$\overline{\mathcal{G}(T)} = (\mathcal{G}(T)^{\perp})^{\perp} \stackrel{V^2 \equiv -I}{=} (V^2(\mathcal{G}(T)^{\perp}))^{\perp} \stackrel{(1)}{=} (V(V(\mathcal{G}(T)))^{\perp})^{\perp} \stackrel{(3)}{=} V(\mathcal{G}(T^*))^{\perp}.$$

So, if T^* is densely defined, we can apply Equation (2) of (a) and find that $\overline{\mathcal{G}(T)} = \mathcal{G}(T^{**})$. Conversely, suppose that T is closable, but $\mathscr{D}(T^*)$ is not dense in H. Then we find $0 \neq y \in \mathscr{D}(T^*)^{\perp}$. This implies that $(y, 0) \in \mathcal{G}(T^*)^{\perp}$. Hence

$$(0,y) \in V(\mathcal{G}(T^*)^{\perp}) \stackrel{(1)}{=} V(\mathcal{G}(T^*))^{\perp} \stackrel{(3)}{=} \overline{\mathcal{G}(T)} \stackrel{(1.17)(b)}{=} \mathcal{G}(\overline{T}).$$

This is a contradiction, since a linear operator maps zero to zero and $y \neq 0$.

(c) If T is closable, then
$$T^* \stackrel{(a)}{=} \overline{T^*} \stackrel{(b)}{=} T^{***} = \overline{T}^*$$