4. Anwendungen

Der Transformationssatz. In diesem Abschnitt beweisen wir die Verallgemeinerung der aus Analysis 1 bekannten Substitutionsregel

$$\int_{\varphi(a)}^{\varphi(b)} f(y) \, dy = \int_a^b f(\varphi(x)) \varphi'(x) \, dx.$$

Zentrale Beobachtung ist Lemma 4.2, dass sich unter linearen Abbildungen das Maß mit dem Betrag der Determinante der Jacobi-Matrix ändert.

Wir bezeichnen mit m das Lebesgue-Maß. Zunächst beobachten wir, dass unter lokal lipschitzstetigen Abbildungen Nullmengen in Nullmengen abgebildet werden:

4.1. Lemma. Es sei $E \subseteq \mathbb{R}^n$ mit m(E) = 0 und $T : E \to \mathbb{R}^n$ eine Abbildung mit

$$\lim_{y \in E, y \to x} \frac{\|T(x) - T(y)\|}{\|x - y\|} < \infty; \quad x \in E.$$

Dann ist m(T(E)) = 0.

Beweis. Wegen der Äquivalenz aller Normen auf \mathbb{R}^n können wir auch mit $||y|| = ||y||_{\infty} = \max\{|y_j|: j=1,\ldots,n\}$ arbeiten. Dann ist die 'Kugel' B(x,r) der in x zentrierte Würfel mit Kantenlänge 2r.

Fixiere $k, \rho \in \mathbb{N}, \varepsilon > 0$. Setze

$$F = F_{k,\rho} = \left\{ x \in E : \frac{\|T(x) - T(y)\|}{\|y - x\|} \le k \text{ für alle } y \in B\left(x, \frac{1}{\rho}\right) \cap E \right\}.$$

Wegen m(E)=0 kann man F durch offene 'Kugeln' $B_j=B(x_j,r_j),\,j=1,2,\ldots$, mit $x_j\in F$ und $r_j<\frac{1}{\rho}$ überdecken, wobei $\sum_j m(B_j)<\varepsilon$ gilt. (Weil das äußere Maß von E Null ist, können wir E durch abzählbar viele offene Mengen U_j (o.B.d.A. Würfel der Kantenlänge $<1/(3\rho)$ überdecken können, so dass $\sum m(U_j)<\varepsilon/2^n$. Ist nun $U_j\cap F\neq\emptyset$, so überdecke U_j durch eine 'Kugel' $B(x_j,r_j)$ wie oben. Da sich die Kantenlänge maximal verdoppelt, erhöht sich dabei das Gesamtvolumen höchstens um den Faktor 2^n .)

Für $x \in F \cap B_j$ ist $||x_j - x|| < r_j < \frac{1}{\rho}, x_j \in F$. Folglich ist

$$||T(x_j) - T(x)|| \le k||x_j - x|| < kr_j$$

und daher

$$T(F \cap B_j) \subseteq B(T(x_j), kr_j), \text{ also}$$

 $T(F) \subseteq \bigcup B(T(x_j), kr_j).$

Weil $m(B(T(x_i), kr_i)) = (2kr_i)^n$ ist, ist

$$m(T(F)) \le \sum m(B(T(x_j), kr_j)) = k^n \sum m(B_j) < k^n \varepsilon.$$

Da $\varepsilon > 0$ beliebig war, folgt, dass T(F) messbar ist mit m(T(F)) = 0. Da $E = \bigcup_{k,\rho} F_{k,\rho}$ ist, schließen wir, dass m(T(E)) = 0.

4.2. Lemma. Es sei T eine lineare Abbildung auf \mathbb{R}^n . Dann gilt für jede Borelmenge E:

$$m(T(E)) = |\det T| m(E).$$

Beweis. Durch $E \mapsto m(T(E))$ wird ein Maß auf den Borelmengen definiert, ebenso durch $E \mapsto |\det T| \, m(E)$. Nach Satz 3.11 genügt es zu zeigen, dass sie auf allen endlichen Intervallen übereinstimmen. Wir reduzieren die Aufgabe:

- (i) Da das Lebesguemaß sich nicht ändert, wenn man die Menge verschiebt, können wir annehmen, dass E ein Intervall ist, das mit einer Ecke im Ursprung liegt.
- (ii) Jede Seitenfläche von I ist eine Nullmenge, vgl. 1.22. Das Bild einer Seitenfläche unter einer linearen Abbildung ist ebenfalls eine Nullmenge nach Lemma 4.1.
- (iii) Wir können daher annehmen, dass $I = \{x : 0 \le x_i < c_i\}$ ist, $c_i > 0$.
- (iv) Sind T_1 und T_2 zwei lineare Abbildungen, und gilt die Aussage für T_1 und T_2 , so auch für $T_1 \circ T_2$ (Multiplikativität der Determinante).
- (v) Jede lineare Abbildung ist Komposition von Operatoren von einem der folgenden drei Typen:
 - (a) Permutationen
 - (b) Matrizen der Form $diag(\alpha, 1, ..., 1)$

(c)
$$\begin{pmatrix} 1 & 0 & \dots & 0 \\ 1 & 1 & \dots & 0 \\ \vdots & & \ddots & \\ 0 & & & 1 \end{pmatrix}$$

- (iv) Unter Permutationen geht das Intervall in eines mit demselben Maß über. Da eine Permutation Determinante ± 1 hat, stimmt die Aussage.
- (v) Eine Diagonalmatrix der obigen Form hat Determinante α . Sie wirkt auf das Intervall dadurch, dass die x_1 -Richtung um den Faktor α gestreckt wird. Das Volumen des neuen Intervalls unterscheidet sich also um den Faktor $|\alpha|$. Daher gilt auch hier die Behauptung.
- (vi) Da wir nun wissen, dass die Behauptung für Diagonalmatrizen richtig ist, können wir o.B.d.A. annehmen, dass $c_1 = \ldots = c_n = 1$. Für T vom Typ (c) ist dann

$$T(I) = \{x : x_1 \le x_2 \le x_1 + 1; \ 0 \le x_j \le 1 \text{ für } j \ne 2\}.$$

Setzt man $S_1 = \{x \in T(I) : x_2 \leq 1\}$ und $S_2 = T(I) \setminus S_1$, so ist $m(T(I)) = m(S_1) + m(S_2)$. Andererseits ist I die disjunkte Vereinigung von S_1 und der um 1 in Richtung e_2 verschobenen Menge S_2 : $I = S_1 \cup (S_2 - e_2)$, so dass

$$m(T(I)) = m(S_1) + m(S_2) = m(S_1) + m(S_2 - e_2) = m(I) = |\det T| \cdot m(I).$$

4.3. Satz (Transformationssatz). Es seien V, W offene Teilmengen des \mathbb{R}^n und $T: V \to W$ ein C^1 -Diffeomorphismus (d.h. T ist invertierbar und $T, T^{-1} \in C^1$). Dann gilt für jedes $f \in L^1(W)$:

- (a) Die Funktion $x \mapsto (f \circ T)(x) |\det T'(x)|$ ist in $L^1(V)$ und
- (b) $\int_{W} f(y) dy = \int_{V} f(T(x)) |\det T'(x)| dx$.

Bemerkung. Es geht mit weniger als C^1 , s. W. Rudin, Real and Complex Analysis. 7.26. Der unten stehende, elementarere Beweis stammt aus J. Dieudonné, Grundzüge der modernen Analysis.

Beweis. Wir gehen in Schritten vor und schreiben $J(x) = |\det T'(x)|$.

1. Schritt. Es genügt, den Satz für den Fall $f = \chi_A$ mit einer messbaren Menge A zu beweisen. Er folgt dann für alle messbaren einfachen Funktionen und – wegen des Satzes über monotone Konvergenz – für alle nichtnegativen Funktionen. Mit $f = f^+ - f^-$ folgt dann die Aussage für alle f.

Nun ist jede Lebesgue-messbare Menge die disjunkte Vereinigung aus einer Borelmenge und einer Nullmenge. Für eine Nullmenge N ist nach Lemma 4.1 auch $T^{-1}(N)$ eine Nullmenge und somit

$$\int_W \chi_N \, dy = 0 = \int_V \chi_{T^{-1}(N)} \cdot J \, dx = \int_V \chi_N \circ T \cdot J dx.$$

Also brauchen wir nur $f=\chi_A,\,A$ Borelmenge, zu betrachten. Da

$$A \mapsto \int_W \chi_A \, dy \text{ und } A \mapsto \int_V (\chi_A \circ T)(x) \, J(x) \, dx = \int_V \chi_{T^{-1}(A)}(x) \, J(x) \, dx$$

nach Satz 2.12 beides Maße auf den Borelmengen sind, können wir uns nach Lemma 3.11 auf den Fall beschränken, dass A=I ein Intervall ist.

- 2. Schritt. Sind $T_1:V\to W_1$ und $T_2:W_1\to W$ zwei C^1 -Diffeomorphismen mit $T=T_2\circ T_1$, so gilt die Transformationsformel für T, sofern sie für T_1 und T_2 gilt. (Klar?)
- 3. Schritt. Der Satz ist richtig, wenn T eine affin-lineare Transformation ist, d.h. $T(x) = x_0 + Lx$ mit konstantem linearem L.

Dazu: Hier ist $J = |\det T'| \equiv |\det L|$. Ist I ein Intervall und $E = T^{-1}(I \cap W)$, so ist

$$\int_{W} \chi_{I} dy = m(I \cap W) = m(T(E)) = m(x_{0} + L(E)) \stackrel{\text{transl.inv.}}{=} m(L(E))$$

$$\stackrel{4.2}{=} \int \chi_{T^{-1}(I \cap W)} |\det L| dx = \int_{V} \chi_{I} \circ T \cdot J dx$$

(zur letzten Gleichung: $x \in T^{-1}(I \cap W) \Leftrightarrow Tx \in I \cap W \Leftrightarrow Tx \in I \text{ und } x \in V$).

4. Schritt. Der Satz ist richtig, wenn n=1 ist. Dann ist V abzählbare disjunkte Vereinigung von Intervallen. Es genügt also, den Satz für den Fall V=]a,b[zu beweisen. Wir können annehmen, dass det T' dort konstantes Vorzeichen hat, o.B.d.A. positiv ist.

Ist
$$I = [c, d] \subseteq W$$
, so ist $T^{-1}(I) = [T^{-1}c, T^{-1}d]$, also

$$\int_{W} \chi_{I}(y) \, dy = \int_{c}^{d} 1 \, dy = d - c = \int_{T^{-1}c}^{T^{-1}d} T'(x) dx = \int_{V} (\chi_{I} \circ T)(x) J(x) \, dx.$$

5. Schritt. Der Satz ist richtig, wenn n beliebig ist und T folgende Form hat:

$$T(x) = (t(x_1, \dots, x_n), x_2, \dots, x_n),$$

wobei $t \in C^1$ und $\det T'(x) = \frac{\partial t}{\partial x_1} \neq 0$:

Ist $x' \in \mathbb{R}^{n-1}$ und ist der x'-Schnitt $V_{x'} = \{x_1 : (x_1, x') \in V\} \neq \emptyset$, so ist $T_1 : x_1 \mapsto t(x_1, x')$ ein C^1 -Diffeomorphismus von $V_{x'}$ auf eine offene Teilmenge von \mathbb{R} . Daher gilt nach Schritt 4:

$$\int_{T_1(V_{x'})} \chi_I(y_1, x') dy_1 = \int_{V_{x'}} (\chi_I \circ T_1)(x_1, x') \left| \frac{dT_1}{dx_1}(x_1) \right| dx_1.$$

Mit Fubini folgt:

$$\int_{W} \chi_{I} dx = \int \left(\int_{T_{1}(V_{x'})} \chi_{I} dy_{1} \right) dx' = \int \left(\int_{V_{x'}} (\chi_{I} \circ T)(x_{1}, x') J(x) dx_{1} \right) dx' = \int_{V} (\chi_{I} \circ T) Jdx.$$

6. Schritt. Wir sind fertig, wenn wir zeigen, dass zu jedem $x \in V$ eine offene Umgebung V_0 existiert, so, dass $T_{|V_0}$ eine Komposition von endlich vielen Abbildungen der Form ist, wie wir sie in Schritt 3 und Schritt 5 behandelt haben.

Dazu: Indem wir T von links und rechts mit Translationen komponieren können wir x=T(x)=0 annehmen. Ersetzen wir zudem T durch $T'(0)^{-1}T$ (Komposition mit konstanter linearer Abbildung), so haben wir weiterhin T'(0)=E, d.h. $\frac{\partial T_j}{\partial x_l}=\delta_{jl}$.

Wir definieren dann

$$v_j: V \to \mathbb{R}^n, \quad v_j(x) = (T_1(x), \dots, T_j(x), x_{j+1}, \dots, x_n).$$

Aus dem Satz von der inversen Abbildung ergibt sich, dass eine offene Umgebung V_0 von 0 existiert, so dass $v_j|_{V_0}$ für jedes j ein Diffeomorphismus auf eine offene Umgebung von 0 ist. Nun ist

$$T = v_n = (v_n \circ v_{n-1}^{-1})(v_{n-1} \circ v_{n-2}^{-1}) \dots \circ (v_2 \circ v_1^{-1})v_1;$$

dabei hat für jedes j die Abbildung $v_j v_{j-1}^{-1}$ die Gestalt

$$x \mapsto (x_1, \dots, x_{j-1}, t_j(x), x_{j+1}, \dots, x_n).$$

Durch Komposition von links und rechts mit einer Permutation geht diese Abbildung in eine von der im Schritt 5 über.

4.4. Polarkoordinaten in \mathbb{R}^2 . Es sei $R \in \mathbb{R}_+ \cup \{+\infty\}$ und

$$D_R = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < R^2\}.$$

Wir wollen $\int_{D_R} f(x,y) d(x,y)$ berechnen, f messbar. Klar: Das Integral ändert sich nicht, wenn wir D_R durch $D_R \setminus \{(x,0) : x \ge 0\} =: W$ ersetzen.

Nun definiere

$$T: \underbrace{]0, R[\times]0, 2\pi[}_{=:V} \to W$$

durch

$$T(r,\varphi) = (r\cos\varphi, r\sin\varphi).$$

Dann sind V, W offene Mengen und $T: V \to W$ ist bijektiv. Ferner ist

$$T'(r,\varphi) = \begin{pmatrix} \cos \varphi & -r\sin \varphi \\ \sin \varphi & r\cos \varphi \end{pmatrix}.$$

Also ist

$$\det T'(r,\varphi) = r > 0 \quad \forall (r,\varphi) \in V.$$

Insbesondere ist T' überall auf V invertierbar, folglich T^{-1} sogar stetig differenzierbar, da $(T^{-1})'(x) = (T'(T^{-1}(x)))^{-1}$. Es folgt

$$\int_{D_R} f(x,y) d(x,y) = \int_V f(T(r,\varphi)) r d(r,\varphi)$$
$$= \int_0^R \int_0^{2\pi} f(r\cos\varphi, r\sin\varphi) r d\varphi dr.$$

4.5. Polarkoordinaten in \mathbb{R}^3 . Es sei $R \in \mathbb{R}_+ \cup \{\infty\}$ und $B_R = B(0, R)$. Wir betrachten

$$T:]0, R[\times]0, 2\pi[\times] - \frac{\pi}{2}, \frac{\pi}{2}[\stackrel{\text{bijektiv}}{\to} W = B_R \setminus \left\{ \begin{pmatrix} x \\ 0 \\ z \end{pmatrix} : x \ge 0 \right\},$$

definiert durch

$$T(r,\varphi,\vartheta) = \begin{pmatrix} r\cos\vartheta\cos\varphi \\ r\cos\vartheta\sin\varphi \\ r\sin\vartheta \end{pmatrix}. \text{ Dann ist}$$

$$T'(r,\varphi,\vartheta) = \begin{pmatrix} \cos\vartheta\cos\varphi & -r\cos\vartheta\sin\varphi & -r\sin\vartheta\cos\varphi \\ \cos\vartheta\sin\varphi & r\cos\vartheta\cos\varphi & -r\sin\vartheta\sin\varphi \\ \sin\vartheta & 0 & r\cos\vartheta \end{pmatrix}.$$

Damit ist

$$\det T'(r, \varphi, \vartheta) = r^2 \cos \vartheta > 0$$

auf W, somit $T^{-1} \in C^1$. Es folgt:

$$\int_{B_R} f(x, y, z) d(x, y, z) =$$

$$\int_0^R \int_0^{2\pi} \int_{-\pi/2}^{\pi/2} f(r\cos\vartheta\cos\varphi, r\cos\vartheta\sin\varphi, r\sin\vartheta) r^2\cos\vartheta d\vartheta d\varphi dr$$

4.6. Definition. Es sei M messbare Menge bzgl. des Maßes μ . Wir setzen

$$\operatorname{vol}_{\mu}(M) := \mu(M) = \int \chi_M(x) \, d\mu.$$

Ohne Angabe von μ meinen wir das Lebesgue-Maß.

4.7. Rotationssymmetrische Körper. Es sei $f:[a,b] \to [0,\infty[$ integrierbar und

$$K = \{(x, y, z) \in \mathbb{R}^3 : a \le z \le b, \ 0 \le x^2 + y^2 \le f(z)^2\}.$$

Dann ist mit "Zylinderkoordinaten" in \mathbb{R}^3 (=Polarkoordinaten für x, y, unverändertes z)

$$\operatorname{vol} K = \int \chi_K(x, y, z) \, d(x, y, z)$$

$$= \int_a^b \int_0^\infty \int_0^{2\pi} \chi_{\{r^2 \le f(z)^2\}} r \, d\varphi \, dr \, dz = 2\pi \int_a^b \int_0^{f(z)} r \, dr \, dz$$

$$= 2\pi \int_a^b \frac{f(z)^2}{2} \, dz = \pi \int_a^b f(z)^2 \, dz$$

 L^p -Räume. Im Folgenden sei (X, \mathcal{A}, μ) ein Maßraum.

- **4.8. Bemerkung.** Man kann die Begriffe der Lebesgue-Messbarkeit und -Integrierbarkeit auch für Funktionen mit Werten in \mathbb{R}^m bzw. \mathbb{C}^m verwenden. Man fordert dann, dass jede Komponente messbar/integrierbar ist.
- **4.9. Definition.** Es sei $1 \le p < \infty$ und $f: X \to \mathbb{C}$ eine Funktion. Wir schreiben $f \in L^p(X)$ (bzw. $L^p(X, \mu)$), falls f messbar ist und $\int |f(x)|^p dx < \infty$ ist. Wir setzen dann

$$||f||_p = \left(\int |f(x)|^p dx\right)^{1/p}.$$

Wir schreiben $f \in L^{\infty}(X)$, falls es eine Nullmenge gibt, außerhalb derer f beschränkt ist. Man setzt

$$||f||_{\infty} = \inf\{r : |f(x)| \le r \text{ für fast alle } x\}.$$

Man nennt $||f||_{\infty}$ auch das wesentliche Supremum von f.

Beachte: Es ist auch $|f(x)| \leq ||f||_{\infty}$ f.ü., da

$$\{x:|f(x)|>\|f\|_{\infty}\}=\bigcup_{x}\left\{x:|f(x)|>\|f\|_{\infty}+\frac{1}{n}\right\}=\text{Vereinigung von Nullmengen}$$

4.10. Definition. Es sei $1 \le p \le \infty$. Die Zahl q mit $\frac{1}{p} + \frac{1}{q} = 1$ (wobei q = 1 für $p = \infty$ und $q = \infty$ für p = 1) heißt zu p konjugierter Exponent. Es ist stets $1 \le q \le \infty$ und $1 < q < \infty$ für $1 . Speziell: <math>p = 2 \Leftrightarrow q = 2$.

 \triangleleft

4.11. Satz. Es sei 1 , <math>q der konjugierte Exponent und $f, g: X \to [0, \infty]$ messbar. Dann gilt:

(1)
$$\int fg \, d\mu \le \left(\int f^p \, d\mu\right)^{1/p} \left(\int g^q \, d\mu\right)^{1/q} \qquad (\text{H\"{o}lder-Ungleichung}) \text{ und}$$

$$(2) \qquad \left(\int (f+g)^p \, d\mu\right)^{1/p} \leq \left(\int f^p \, d\mu\right)^{1/p} + \left(\int g^p \, d\mu\right)^{1/p} \qquad (Minkowski-Ungleichung).$$

Beweis. (1) Es seien A und B die Faktoren auf der rechten Seite. Ist A=0 so ist f=0 f.ü., also auch fg=0 f.ü. und damit nichts zu zeigen. Ist $A=+\infty$ und $B\neq 0$, so ist ebenfalls nichts zu zeigen. Analoges gilt für B. Wir können also $F=\frac{f}{A}$ und $G=\frac{g}{B}$ definieren. Dann ist

$$\int F^p \, d\mu = 1 = \int G^q \, d\mu.$$

Ist $x \in X$ mit $0 < F(x) < \infty$ und $0 < G(x) < \infty$, so bestimmen wir s,t mit $F(x) = e^{s/p}$ und $G(x) = e^{t/q}$. Da $\frac{1}{p} + \frac{1}{q} = 1$ ist, folgt aus der Konvexität der Exponentialfunktion, dass

$$e^{s/p+t/q} \le e^s/p + e^t/q$$

also

$$F(x)G(x) \le \frac{F(x)^p}{n} + \frac{G(x)^q}{q}.$$

Diese Ungleichung gilt trivialerweise auch, falls F(x) = 0 oder G(x) = 0. Die Menge, wo F oder G den Wert $+\infty$ annehmen, ist eine Nullmenge. Integration der Ungleichung zeigt, dass

$$\int FG \, d\mu \le \frac{1}{p} + \frac{1}{q}.$$

Dies ist äquivalent zur Behauptung.

Um (2) zu zeigen, schreibe

$$(f+g)^p = f(f+g)^{p-1} + g(f+g)^{p-1}.$$

Die Höldersche Ungleichung liefert dann

$$\int f(f+g)^{p-1} d\mu \le \left(\int f^p d\mu \right)^{1/p} \left(\int (f+g)^{(p-1)q} d\mu \right)^{1/q}$$

und ebenso

$$\int g(f+g)^{p-1} d\mu \le \left(\int g^p d\mu \right)^{1/p} \left(\int (f+g)^{(p-1)q} d\mu \right)^{1/q}$$

Addition ergibt wegen (p-1)q = p

$$\int (f+g)^p d\mu \le \left(\int (f+g)^p d\mu\right)^{1/q} \left(\left(\int f^p d\mu\right)^{1/p} + \left(\int g^p d\mu\right)^{1/p}\right).$$

Die Behauptung ergibt sich nun, indem wir durch $C = (\int (f+g)^p d\mu)^{1/q}$ dividieren. Beachte dazu, dass wir $0 < C < \infty$ annehmen können:

- (i) Aus C = 0 folgt f = g = 0 f.ü., also ist nichts zu zeigen.
- (ii) Wegen der Konvexität der Funktion $t \mapsto t^p$ ist

$$\left(\frac{f+g}{2}\right)^p \le \frac{1}{2} \left(f^p + g^p\right)$$

Aus $C = \infty$ folgt daher, dass auch die rechte Seite von (2) unendlich ist; wieder ist nichts zu zeigen.

4.12. Satz. Es sei $1 \le p \le \infty$ und q der konjugierte Exponent.

- (a) Für $f, g \in L^p(X)$ ist $f + g \in L^p(X)$ und $||f + g||_p \le ||f||_p + ||g||_p$ (Minkowski).
- (b) Für $f \in L^p(X)$ und $g \in L^q(X)$ ist $fg \in L^1(X)$ und $||fg||_1 \le ||f||_p ||g||_q$, (Hölder).

Beweis. Für 1 folgen beide Aussagen sofort aus Satz 4.11. Ist <math>p = 1, so folgt (a), weil $|f + g| \le |f| + |g|$. Für $p = \infty$: Es ist nach 4.9 $|f(x)| \le ||f||_{\infty}$ und $|g(x)| \le ||g||_{\infty}$ fast überall, somit $|f(x) + g(x)| \le ||f||_{\infty} + ||g||_{\infty}$ f.ü..

(b) ist für p = 1 und $p = \infty$ offensichtlich, weil $|f(x)g(x)| \le |f(x)| ||g||_{\infty}$ f.ü..

4.13. Satz. Für $1 \le p \le \infty$ ist $L^p(X)$ ein Vektorraum. Identifizieren wir Funktionen, die sich nur auf einer Nullmenge unterscheiden, so ist $(L^p(X), \|\cdot\|_p)$ ein Banachraum (d.h. ein vollständiger normierter Raum).

Beweis. Abgesehen von der Vollständigkeit haben wir schon alles gezeigt. Es sei also (f_k) eine Cauchyfolge in L^p und zunächst $p < \infty$.

Wir wählen eine Teilfolge mit

$$||f_{k_{j+1}} - f_{k_j}||_p \le 2^{-j}$$

und setzen

$$g_l = \sum_{j=1}^{l} |f_{k_{j+1}} - f_{k_j}|, \quad g = \sum_{j=1}^{\infty} |f_{k_{j+1}} - f_{k_j}|.$$

Aus der Minkowski-Ungleichung folgt, dass $||g_k||_p \leq 1$ ist. Ferner zeigt monotone Konvergenz

$$||g||_p^p = \int g^p d\mu = \int \lim (g_l)^p d\mu = \lim \int g_l^p d\mu = \lim ||g_l||_p^p \le 1.$$

Insbesondere ist die Reihe für g fast überall absolut konvergent, somit konvergiert auch

$$f_{k_1} + \sum_{j=1}^{\infty} (f_{k_{j+1}} - f_{k_j})$$

fast überall. Wir bezeichnen mit f den Grenzwert, wo er existiert, und setzen ansonsten f = 0. Dann ist

$$f(x) = \lim f_{k_i}(x)$$
 fast überall.

Wir zeigen nun, dass $f_k \to f$ in L^p . Zu $\varepsilon > 0$ wähle N mit $||f_l - f_k||_p < \varepsilon$ für alle $k, l \ge N$. Dann liefert der Satz von der monotonen Konvergenz, dass

$$\int |f - f_k|^p d\mu = \int \lim_{j \to \infty} |f_{k_j}(x) - f_k(x)|^p d\mu \text{ (geschickte Umformung des Limes!)}$$

$$= \int \lim_{l \to \infty} \inf\{|f_{k_j}(x) - f_k(x)|^p : j \ge l\} d\mu \stackrel{\text{monKvgz}}{=} \liminf_{j \to \infty} \int |f_{k_j}(x) - f_k(x)|^p d\mu < \varepsilon^p.$$

Es folgt, dass $f-f_k\in L^p(X)$ ist und somit auch f, da $f=f_k+(f-f_k)$. Ferner zeigt die Ungleichung, dass $\|f-f_k\|_p\to 0$.

Für den Fall $p=\infty$ definiert man

$$N_k = \{x : |f_k(x)| > ||f_k||_{\infty}\} \text{ und } N_{kl} = \{x : |f_k(x) - f_l(x)| > ||f_k - f_l||_{\infty}\}.$$

Alle sind Nullmengen, ebenso ihre Vereinigung, N.

Zu jedem $\varepsilon > 0$ existiert ein n_0 so dass $||f_k - f_l||_{\infty} < \varepsilon$ für alle $k, l \ge n_0$. Nach Definition gilt dann $|f_k(x) - f_l(x)| < \varepsilon$ für $x \notin N$. Insbesondere ist für jedes $x \notin N$ die Folge $(f_k(x))$ eine Cauchy-Folge in \mathbb{C} , hat also einen Grenzwert f(x). Es folgt für $x \notin N$, $l \ge n_0$:

$$|f(x) - f_l(x)| = \lim |f_k(x) - f_l(x)| \le ||f_k - f_l||_{\infty} < \varepsilon.$$

Somit konvergiert die Folge (f_k) in der ∞ -Norm gegen f, und f ist messbar als punktweiser Grenzwert messbarer Funktionen. Weil für beliebiges $l \ge n_0$ gilt: $||f||_{\infty} \le ||f_l||_{\infty} + ||f - f_l||_{\infty} \le ||f_l||_{\infty} + \varepsilon$ ist f in L^{∞} .

Der Beweis des obigen Satzes enthält ein Resultat, das selbst auch interessant ist:

- **4.14.** Satz. Ist $1 \le p \le \infty$ und (f_k) eine Cauchy-Folge in L^p mit Grenzwert f, so enthält (f_k) eine Teilfolge, die punktweise f.ü. gegen f konvergiert.
- **4.15. Bemerkung.** Die obigen Sätze sind auch für den Fall interessant, dass μ das Zählmaß auf den Menge \mathbb{N}_0 ist. Die entsprechenden L^p -Räume sind die Folgenräume, die meist mit ℓ^p bezeichnet werden:

$$\ell^p(\mathbb{N}_0) = \Big\{ x = (x_0, x_1, x_2, \dots) : ||x||_p = \Big(\sum_{j=0}^{\infty} |x_j|^p \Big)^{1/p} < \infty \Big\}.$$

Hier sehen wir x als Abbildung $x : \mathbb{N}_0 \to \mathbb{C}$; $x(j) = x_j$. Es ist

$$\int |x|^p d\mu = \sum_{j=0}^{\infty} |x_j|^p.$$

Auch für diese Räume gelten also Hölder- und Minkowski-Ungleichung. Statt \mathbb{N}_0 kann man alle abzählbaren Mengen verwenden (insbesondere \mathbb{Z}) und auch überabzählbare; mehr später.

Für den folgenden Satz sei $(X, \mathcal{A}, \mu) = (\mathbb{R}^n, \mathcal{M}, m)$.

4.16. Satz. Es sei $1 \leq p < \infty$, $f \in L^p(\mathbb{R}^n)$ und $\varepsilon > 0$. Dann findet man eine stetige Funktion g_{ε} , die außerhalb einer kompakten Menge konstant Null ist und für die $||f - g_{\varepsilon}||_p < \varepsilon$ gilt.

Achtung: Für $p = \infty$ ist diese Aussage falsch, betrachte etwa $f \equiv 1$ auf \mathbb{R}^n .

Beweis. (Skizze) Es sei χ_{I_N} die charakteristische Funktion von $I_N = [-N, N]^n$. Dominierte Konvergenz zeigt, dass $||f - \chi_{I_N} f||_p \to 0$. Wählen wir N so groß, dass $||f - \chi_{I_N} f||_p < \varepsilon/2$, so langt es, ein g wie oben zu finden mit $||g - \chi_{I_N} f||_p < \varepsilon/2$. Indem man f in f^{\pm} zerlegt und diese Funktionen durch einfache messbare Funktionen nähert, sieht man, dass es genügt, zu jeder messbaren Menge $M \subseteq I_N$ eine Folge stetiger Funktionen h_k zu finden, die außerhalb I_{2N} verschwindet und $\chi_M - h_k \to 0$ in L^p erfüllt.

Nun existiert zu $M \subseteq I_N$ eine Folge abgeschlossener Mengen $A_j \subseteq M$ mit $\mu(M \setminus A_j) \to 0$, d.h. $\chi_M - \chi_{A_j} \to 0$ in L^p . Wir können also annehmen, dass $M = A_j$ abgeschlossene Teilmenge von I_N , somit kompakt ist.

Wir setzen dann zunächst

$$g_k(x) = \frac{1}{1+k \operatorname{dist}(x, M)}.$$

Dann ist

- (i) $0 \le g_k \le 1$
- (ii) $q_k(x) = 1 \Leftrightarrow x \in M$
- (iii) $g_k(x) \to 0$ für $x \notin M$ und $k \to \infty$.

Weiterhin definieren wir $\varphi:[0,1]\to[0,1]$ durch

$$\varphi(t) = \begin{cases} 0; & 0 \le t \le 1/2; \\ 2(t - 1/2); & 1/2 \le t \le 1 \end{cases}$$

Für $h_k = \varphi \circ g_k$ gilt dann schließlich

(i) $0 \le h_k \le 1$

- (ii) $h_k(x) = 1 \Leftrightarrow x \in M;$
- (iii) $h_k(x) \searrow 0$ für $k \to \infty$, falls $x \notin M$
- (iv) $h_k(x) = 0$, falls $x \notin [-N 2, N + 2]^n$

Mit dem Satz von der dominierten Konvergenz folgt dass $h_k - \chi_M \to 0$ in L^p .

 \triangleleft

4.17. Bemerkung. Man kann in Satz 4.16 sogar 'stetig' durch ' C^{∞} ' ersetzen.