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9. Proof of the K-theoretic Index Theorem

9.1. The situation. Let M be a compact manifold. We shall assume that
M is endowed with a Riemannian metric that allows us to identify TM and
T ⇤M .

Furthermore, let E and F be complex vector bundles over M and
P : C1

(M,E) ! C1
(M,F )

an elliptic pseudodifferential operator. For simplicity, let us fix the order of
P to be zero.

Denote by ⇡ : T ⇤M ! M and ⇡0 : T ⇤M \ 0 ! M the base point projec-
tions. By definition, the principal symbol

�(P ) : ⇡⇤
0E ! ⇡⇤

0F

then is an isomorphism. By possibly using an excision function ⇢ as in 8.4,
we have

[�(P )] = [(⇡⇤E,⇡⇤F,�(P ))] 2 Kc(T
⇤M) ⇠= Kc(TM).

9.2. Outline. According to Theorem 5.35. P is a Fredholm operator with
an index indP 2 Z.

Below, we will see how we can moreover associate a so-called topological
index indt[�(P )] 2 Z to the element [�(P )] in Kc(TM). The index theorem
states that these two numbers are the same.

In fact, one changes the perspective slightly: Given the element [�(P )] 2

Kc(TM) we can pick any zero order pseudodifferential operator P̃ : C1
(M,E) !

C1
(M,F ) with principal symbol �(P̃ ) = �(P ). From Theorem 5.40 we

know that
ind P̃ = indP,

so that it makes sense to associate to [�(P )] the analytic index

inda[�(P )] = ind P̃ .

Then the task changes to showing that
inda[�(P )] = indt[�(P )].

In fact, as we shall see in Lemma 9.9, below, every element of Kc(T ⇤M) is
of the form [(⇡⇤E,⇡⇤F, a)] for suitable complex vector bundles E,F over M
and a bundle morphism a : ⇡⇤E ! ⇡⇤F which is an isomorphism outside a
compact set and homogeneous of degree zero in the fiber. So we will actually
show that

indt = inda : Kc(T
⇤M) ! Z.

9.3. Theorem: Another picture for Kc. We have the following equiv-
alent representation for Kc(X) whenever X is a locally compact Hausdorff
space. We choose an additional point ’P ’ and denote by X+ the one-point
compactification of X.16 This is a compact space. We can therefore consider

16
As a set, X

+
is X[̇{P}. The open sets are given by the open sets in X and all sets

of the form {P}
Ṡ
(X \K), where K subset X is compact.
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the usual K-theory on X+. Moreover, the embedding ◆ : P ,! X+ induces
the evaluation map ◆⇤ : K(X+

) ! K({P}). We let

Kc(X) = ker(◆⇤ : K(X+
) ! K({P})) ⇢ K(X+

).

Proof. Every vector bundle in the newly introduced definition is of the form
[(E,F )], where E and F are complex vector bundles over X+. The fact that
the class is in the kernel of ◆⇤ implies that EP and FP are isomorphic. By
continuity, there exists a neighborhood U of P such that also EU and FU

are isomorphic via some vector bundle isomorphism a. Since X+
\ U is a

compact subset of X, we obtain a triple (E,F, a) in the previous sense.
Conversely, let (E,F, a) be a representative for a class in the previous

definition of Kc(X). XXX

9.4. Lemma. Let Y be a locally compact Hausdorff space and X an open
subset of Y . Then we have a natural extension map F : Kc(X) ! Kc(Y ).

Proof. We can identify X+ with the quotient space Y +/(Y +
\ X). The

natural map � : Y +
! Y +/(Y +

\ X) = X+ then induces the map � :

K(X+
) ! K(Y +

). In view of the fact that the map preserves the additional
point P , the image of a class in Kc(X) is a class in Kc(Y ) so that � restricts
to F .

9.5. Lemma. With every proper embedding17 f : X ,! Y we can associate
a map

f! : Kc(TX) ! Kc(TY ).

Proof. The embedding f : X ,! Y induces a proper embedding f⇤ : TX ,!
TY by associating to a path � : [�1, 1] ! X its image f � �.

Let NX be the normal bundle to f(X) in Y 18 Then the normal bundle
NTX to f⇤(TX) in TY is the pull-back of NX �NX to T (f(X)), where the
first summand is in the direction of the manifold, the second in the direction
of the fiber. Note that T (TxY ) ⇠= TxY naturally.

We observe that NTX
⇠= NX �NX has a complex structure, given by

J =

✓
0 �I
I 0

◆
.

Of course, Kc(TX) and Kc(f⇤(TX)) are naturally isomorphic. We can there-
fore consider NTX as a complex vector bundle over TX and apply the Thom
isomorphism

i! : Kc(TX) ! Kc(NTX).

As a normal bundle, NTX can be identified with an open neighborhood
of f(TX) in TY . Lemma 9.4 thus shows that we have a natural extension
map F : Kc(NTX) ! Kc(TY ). Their composition yields the desired map

f! : Kc(TX) ! Kc(TY ).

⇤
17

A map is proper, if the preimage of every compact set is compact

18
i.e. Nx, x 2 X is the space of all u 2 TxY such that hu, vi = 0 for all v 2 TxX.
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9.6. Whitney embedding theorem. Any manifold M can be embedded
into RK for suitably large K. One can show that K = 2dimM suffices.

Proof. We can cover M by compact sets Kj , j = 1, . . . , J , contained in
coordinate neighborhoods Mj with coordinate maps j : Mj ! Uj ✓ Rn.
Choose 'j 2 C1

c (Mj) with 'j ⌘ 1 on Kj , and define

F : X ! R(n+1)J by F (x) = ('1(x),'1(x)1(x), . . . ,'J(x),'J(x)J(x)).

This map is injective: If x 2 Kj and F (y) = F (x), then 'j(y) = '(x) = 1.
Hence x 2 Mj and j(x) = j(y) and thus x = y. Similarly, F 0

(x) is
injective. Therefore M is a submanifold of R(n+1)J . ⇤
9.7. The topological index. Identify TM and T ⇤M , consider [�(P )] as
an element of Kc(TM), choose an embedding f of M into RK for some large
K and consider the induced map

f! : Kc(TM) ! Kc(TRK
).

In view of the fact that TRK ⇠= CN is a complex vector bundle over the
point 0, we have the inverse of the Thom isomorphism

(i!)
�1

: Kc(TRK
) ! K({0}).

Since the K-theory of a single point is naturally isomorphic to Z, we have,
in a natural way, the topological index map

indt := (i!)
�1f! : Kc(TM) ! Z.

9.8. Remark. Landweber [15, p.17] (adapted from Atiyah-Singer [3, p.498])
argues as follows for the independence of the embedding: Suppose that we
have two embeddings i : M ! Rm and i0 : M ! Rn. Considering the
diagonal embedding i� i0 : M ! Rm+n, we see that i� i0 is isotopic to the
embeddings i� 0 and 0� i0. Letting �n 2 K(Cn

) denote the Thom class of
Cn

= TRn, we note that (i� 0)!(x) = i!(x) · �n and (0� i0)!(x) = �m · i0!(x).
We then see by the transitivity of the Thom isomorphism that i � 0 and i
determine the same topological index, as do 0� i0 and i0. It follows that the
topological index does not depend on our choice of embedding.

In order to define the analytic index on Kc(TM) we need the following
result:

9.9. Lemma. Let M be compact and V a smooth real vector bundle over
M , e.g. V = TM . Then every element of Kc(V ) has a representative
the form (⇡⇤F 0,⇡⇤F 1,�), with complex vector bundles F 0, F 1 over M , the
projection map ⇡ : V ! M and a vector bundle homomorphism � which
outside a compact set is an isomorphism and homogeneous of degree 0 (and
hence can be continued zero-homogeneously to V \ 0).

Proof. Given a class in Kc(V ) choose a representative (E0, E1
) in K(V +

)

with E0
P
⇠= E1

P
. There is a neighborhood U of the additional point over which

E0 and E1 are isomorphic. We can endow V with a Riemannian metric
and assume this neighborhood to be the complement of the ball bundle
Br(V ) = {(x, v) 2 V : x 2 M, kvk < r} for some r > 0. The classes
of E0 and E1 only depend on the restriction to Br(V ). Inside Br(V ) we
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let19 F j
= ⇡⇤Ej

M
for j = 0, 1, and claim that the bundles Ej and F j are

isomorphic. In fact, following [1, Lemma 1.4.5], define the map

H : Br(V )⇥ [0, 1] ! Br(V ), (x, v) 7! (x, tv)

and the bundles E j
= H⇤Ej over Br(V )⇥ [0, 1]. Then

E j

|Br(V )⇥{0} = ⇡⇤Ej

M
= F j and E j

|Br(V )⇥{1} = Ej .

This shows that there are isomorphisms �j : Ej
⇠=
! F j over Br(V ). Denote by

↵ : E0
! E1 the isomorphism between the bundles on the boundary Sr(V ) =

{(x, v) : kvk = r} of Br(V ). Then we obtain an isomorphism � = �1↵�
�1
0

between F 0 and F 1 on Sr(V ). As these are pull-backs from the base, we can
extend � homogeneously to V \0. Then the class of (⇡⇤F 0,⇡⇤F 1,�) coincides
with that of (E0, E1,↵), since the class only depends on the restriction to
Br(V ). ⇤

9.10. Definition. Given a class in Kc(TM), Lemma 9.9 allows us to find
a representative of the form (⇡⇤F 0,⇡⇤F 1,�), where � is 0-homogeneous. As
pointed out already in 9.2, we can associate to this representative a zero order
pseudodifferential operator P : C1

(M ;F 0
) ! C1

(M,F 1
) with symbol �

and to this pseudodifferential operator its index, which does not depend on
the choices. This is the analytic index map.

9.11. Remark. It remains to check that this is independent of the choice of
the representative. See Lawson-Michelsohn, [16, p. 247] for an argument.

9.12. Lemma. The topological index can be seen as a map, which associates
to a compact manifold M a map indt = ind

M

t : Kc(TM) ! Z. It satisfies
the following two properties:

(A) If M is a point (and hence TM is a point), then indt : Kc(TM) ⇠=

Kc({0}) = K({0}) ! Z is the identity map.
(B) If f : M ,! M 0 is an embedding of compact manifolds with the

associated map f! : Kc(TM) ! Kc(TM 0
) constructed in 9.5, then

ind
M

0
t (f!u) = ind

M

t (u), u 2 Kc(TM).

Proof. (A) holds by definition.
(B) follows from the fact that the Thom isomorphism satisfies (ii0)! =

i!i0!. ⇤

9.13. Observation. In order to establish the K-theoretic version of the
index theorem, it suffices to show that the analytic index also satisfies (A)
and (B) in Lemma 9.12.

Proof. Indeed, suppose this is true. Consider the embeddings i : M ,! RK

for some large K and j : P ! RK , where P is a single point.
We note that SK = (RK

)
+ is the one-point compactification. Denote by

i+ : M ,! SK and j+ : P ,! SK the associated embeddings. Consider the

19
Here we view M as the zero section of V
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diagram

Kc(TRK
)

Kc(TM) Kc(TSK) Kc(TP )

Z,

F
i!

i
+
!

indMa
indS

K
a

j
+
!

j!

indPa

where F is the extension map from Lemma 9.4. The top two triangles then
commute by definition of i! and j!. The bottom two triangles commute by
(B). According to (A), indPa is the identity. Since j! is an isomorphism, and
indt : Kc(TM) ! Z is given by (j!)�1i!, the commutativity of the diagram
shows that it coincides with inda. ⇤
9.14. The analytic index satisfies (A) in Lemma 9.7. In fact, a
pseudodifferential operator acting on sections of complex vector bundles over
a manifold, which consists of a single point is just a linear map P : Cn1 !

Cn2 . As we saw in the beginning of Section 2, the index then is n1 � n2

which coincides with the K-theoretic map.

9.15. Proving property (B). We recall that the map Kc(TM) ! Kc(TM 0
)

associated to a proper embedding f : M ! M 0 is the composition

Kc(TM)
i!
! Kc(NTM )

F
! Kc(TM

0
),

where i! is given by the Thom isomorphism and F is the extension map of
Lemma 9.4 which we apply after considering the normal bundle NTM to
f⇤(TM) in TM 0 as an open neighborhood of f⇤(TM).

Now we observe that the normal bundle NTM can also be considered as
TN , where N is the normal bundle to M , so that we obtain the following
diagram

Kc(TM) Kc(TN) Kc(TM 0
)

Z.

i!

indMa

F

indNa
indM

0
a

(1)

Property (B) will be shown once we establish the commutativity of both
triangles. The following lemma addresses the right triangle.

9.16. Lemma. The right triangle in 9.15(1) commutes.

Proof. (Sketch). In a first step one shows that the statement of Lemma 9.9
extends to the case where the base U (in our case, U = N) is non-compact
as follows: Every class in Kc(TU) has a representative (⇡⇤E0,⇡⇤1,�) where
E0 and E1 are bundles over U that are trivial outside a compact subset of
U and where � is homogeneous of degree zero outside a compact subset of
T ⇤U , see [16, Lemma 13.3].

In particular, outside a compact subset L of U , one has trivializations

⌧E0 : E0
|U\L

⇠=
�! (U \ L)⇥ Cm and ⌧E1 : E1

|U\L
⇠=

�! (U \ L)⇥ Cm
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with respect to which �x,⇠ = (⌧1
E
)
�1
x � (⌧0

E
)x, independent of ⇠ for (x, ⇠) 2

T ⇤
(U \ L). This means that, over T ⇤

(U \ L), the bundle map � comes
from a bundle map �0 over the base. Moreover, with respect to the above
trivializations, �0 becomes the identity mapping over U \ L. We then find
a zero order differential operator P : C1

(U,E0
) ! C1

(U,E1
) which is the

identity outside a compact set (the operator can be chosen differential since
� comes from the map �0 on the base, i.e. is just a morphism.

Applying this to the case where U = N
F

,! M 0, and (⇡⇤E0,⇡⇤E1,�) 2

Kc(N), we extend E0 and E1 by the trivial bundle Cm to bundles E0 and E1

over M 0 and extend � as the identity. This gives us a class (⇡⇤E0,⇡⇤E1,�) =
F!(⇡⇤E0,⇡⇤E1,�) in Kc(T ⇤M 0

). We can also extend the above operator P
by the identity. This furnishes an elliptic operator F!P on M 0.

Now assume C1
(N,E0

) 3 u 2 kerP . The fact that P is the identity
outside the compact set L implies that suppu ⇢ L. Hence u extends, by zero,
to a function in C1

(M 0, E0
) with P 0u = 0. Hence dimkerP  dimkerF!P .

Conversely, if C1
(M 0, E0

) 3 v and F!Pv = 0, then, by the same argument as
before, supp v ⇢ N , and thus v|N 2 kerP . One concludes that dimkerP =

dimkerF!P . A corresponding argument applies to the kernels of the adjoints,
so that the analytic indices of P and F!P agree. ⇤
9.17. Remark. To show that the left triangle in 9.15(1) also commutes
requires a much lengthier argument.


