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8. Basics of K-theory

8.1. The ring K(M).
(i) A virtual bundle over a (not necessarily compact) manifold M is a pair

V = (E0, E1
) of vector bundles over M .

(ii) V is said to be trivial, if E0 and E1 are isomorphic.
(iii) Two virtual bundles V1 = (E0

1 , E
1
1) and V2 = (E0

2 , E
1
2) are isomorphic,

if E0
1
⇠= E0

2 and E1
1
⇠= E1

2 are isomorphic bundles.
(iv) On the set of these pairs we define the operations � and ⌦ of direct

sum and tensor product for virtual bundles V1 and V2 as above by

V1 � V2 = (E0
1 � E0

2 , E
1
1 � E1

2)

V1 ⌦ V2 = ((E0
1 ⌦ E0

2)� (E1
1 ⌦ E1

2), (E
0
1 ⌦ E1

2)� (E1
1 ⌦ E0

2)).

(v) We call V1 and V2 stably isomorphic and write V1 ⇠ V2, if there exist
trivial virtual bundles W1 and W2 such that

V1 �W1
⇠= V2 �W2.

(vi) The direct sum and the tensor product define an addition and a mul-
tiplication on the equivalence classes of virtual bundles with respect
to ⇠. There exists a unit element, given by the class of (0, 0). For any
class [V ] = [(E0, E1

)] we have the additive inverse �[V ] = [(E1, E0
)].

We then obtain a commutative ring K(M).

This leads to the following obvious result:

8.2. Lemma. The map M 7! K(M) is a contravariant functor from the
category of manifolds to that of commutative rings. In fact, a map f : M !

N induces a pull-back of vector bundles f⇤ and then a map f !
: K(N) !

K(M) by f !
(E0, E1

) = (f⇤E0, f⇤E1
).

8.3. Characteristic classes for virtual bundles. Now let M be compact.
We can extend the definition of characteristic classes from vector bundles to
virtual bundles and K-theory classes: For V = (E0, E1

) we let

f+(V ) = f+(E
0
)� f+(E

1
)

f⇥(V ) = f⇥(E
0
) ^ f�1

⇥ (E1
).

It follows from 7.21(c) that the definition extends to K-theory.
The fact that ch is multiplicative implies that

ch : K(M) ! Heven
(M)

is a ring homomorphism.

For noncompact manifolds one generally does not use the concept above,
but rather the following:

8.4. K-theory with compact support.
(i) A virtual bundle with compact support over the manifold M is a triple

V = (E0, E1, a), consisting of two vector bundles E0, E1 over M and a
vector bundle morphism a : E0

! E1 which is an isomorphism outside
a compact set X ✓ M . The minimal such set is the support of a.
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(ii) Actually, we only need to know a outside a compact set. For this
reason, one often does not bother to define a everywhere: It just needs
to be given on a set with compact complement. In fact, suppose we
are given an isomorphism ã : E0

|M\X ! E1
|M\X for some compact X.

Choose ⇢ 2 C1
(M) such that ⇢ = 0 on X and ⇢ = 1 outside a compact

set. Then a = ⇢ã can be extended to a morphism E0
! E1 which is

an isomorphism outside a compact set. See also Lemma 8.6(a)
(iii) If M is compact, then the condition on a is void.
(iv) V is trivial if a is an isomorphism everywhere.
(v) The direct sum V1 � V2 of V1 = (E0

1 , E
1
1 , a1) and V2 = (E0

2 , E
1
2 , a2) is

given by

V1 � V2 = (E0
1 � E0

2 , E
1
1 � E1

2 , a1 � a2).

(vi) Two triples V1 and V2 as above are isomorphic if there exist bundle
isomorphisms

�j : E
j

1 ! Ej

2, j = 0, 1,

which are defined everywhere on M and satisfy

a2 = �1a1�
�1
0 outside a compact set.(1)

(vii) Two triples V1 and V2 as above are stably isomorphic if there exist
trivial triples W1, W2 such that V1 �W1 and V2 �W2 are isomorphic.
As before, we write V1 ⇠ V2.

8.5. The group Kc(M).
(a) The equivalence classes form an abelian group with respect to direct

sums: [V1] + [V2] = [V1 � V2]. We denote this group by Kc(M).
(b) Kc(M) is a K(M)-module with the definition

[(F 0, F 1
)][(E0, E1, a)]

= [(F 0
⌦ E0, F 0

⌦ E1, 1⌦ a)]� [(F 1
⌦ E0, F 1

⌦ E1, 1⌦ a)].

Proof. (a) It is clear that the equivalence classes form a semi-group. The
group property follows from Lemma 8.6, below.

(b) – ⇤
8.6. Lemma.
(a) Stability: For 0  t  1 let V (t) = (E0, E1, a(t)), where t 7! a(t) is

smooth in t and a(t) is an isomorphism outside some fixed compact
set K (independent of t). Then V (0) is isomorphic to V (t) for all t.
In particular [V (0)] = [V (1)].

(b) Logarithmic property: Let V1 = (E0, E1, a) and V2 = (E1, E2, b) and
let V3 = (E0, E2, ba). Then

[V3] = [V1] + [V2].

(c) The inverse to [(E0, E1, a)] is [(E1, E0, a�1
)].

Proof. (a) We have to find isomorphisms �0(t) : E0
! E0 and �1(t) : E1

!

E1 such that
a(t) = �1(t)a(0)�0(t)�1.
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We choose �1(t) ⌘ I, which reduces the task to finding �0(t) such that

a(t)�0(t) = a(0) outside a compact set.

Let ⇢ be a smooth function which vanishes on K and is equal to 1 outside
a small neighborhood of K. For �0(t) we then choose a fundamental matrix
for the initial value problem

�̇0 = �⇢ · (a�1
)
·a�0; �0(0) = I;

(we do this for m 2 M in the fibers over m). We know (Analysis 2) that
this system has a unique solution. On the set, where ⇢ ⌘ 1, we see that
�(t) = a�1

(t)a(0) is a solution (hence the solution). This shows that the
triples V (0) and V (t) are isomorphic: Equation 8.4(1) holds with a2 = a(t)
and a1 = a(0).

(b) The triple V3 = (E0, E2, ba) is equivalent to the triple (E0
�E1, E2

�

E1, ba � 1) which in turn is equivalent to
✓
E0

� E1, E1
� E2,

✓
0 1

ba 0

◆◆
.

The class of V1 � V2 is, by definition, (E0
�E1, E1

�E2, a� b). Now we see
that the two morphisms are homotopic, so that the triples are equivalent by
part (a). In fact, consider, for 0  ✓  ⇡/2,

✓
1 0

0 b

◆✓
cos ✓1E1 sin ✓1E1

sin ✓1E1 cos ✓1E1

◆✓
a 0

0 1

◆
:

E0 E1

� ! �

E1 E2
.

This is a smooth family of homomorphisms (we consider the matrix in the
middle as an endomorphism of E1

�E1). For ✓ = 0 we obtain a� b, and for

✓ = ⇡/2, we obtain
✓
0 1

ba 0

◆
.

(c) follows from (b). ⇤
8.7. Chern character for classes in Kc(M). Let V = (E0, E1, a), and let
@0 and @1 be connections for E0 and E1, respectively. By 7.9 the covariant
derivative @b for the morphism a : E0

! E1, is defined by

(@a)u = @1(au)� a@0u.

We claim that we can always choose @0 and @1 in such a way that @a = 0

outside a compact set.
Starting with any given @0 and @1, let ⇢ be a smooth function which

vanishes on K and is equal to 1 outside a small neighborhood of K. Define
@̃0 by

@̃0u = @0u+ (⇢a�1@a)u

so that the connection forms of @0 and @̃0 differ by �� = ⇢a�1@a. For a
homomorphism a, the covariant derivative @̃a defined by @̃0 and @1 satisfies

@̃a = @a� a(⇢a�1@a).

Hence @̃a = 0 on the set where ⇢ ⌘ 1.
Note: If @0 and @1 are hermitian connections (i.e. Ej , j = 0, 1, are

hermitian and dhu, vi = h@ju, vi + hu, @jvi) and a is unitary, then @̃0 is
hermitian.
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The curvature ⌦̃0 of @̃0 is given by

⌦̃0 = ⌦0 + @(⇢a�1@a) + (⇢a�1@a)2,

where ⌦0 is the curvature of @0. We then define the form ch ⇠ 2 Heven
comp(M)

by
ch ⇠ = tr e!̃0 � tr e!1 .

This form has indeed compact support: Differentiating the identity @̃a = 0

we obtain that
0 = @̃(@̃a) = ⌦1a� a⌦̃0.

Outside K we therefore have ⌦̃0 = a�1
⌦1a, so that the traces of e!̃0 and e!̃1

coincide.
It remains to check that the class is independent of the choices made.

8.8. Remark. Heven
comp(M) is a Heven

(M)-module and

ch : Kc(M) ! Heven

comp(M)

is a module homomorphism.

The Thom isomorphisms. Let M be a compact manifold of dimension
n and E a complex vector bundle over M of rank m with a hermitian form
h·, ·i. We denote by N the total space of E. This is a manifold of real
dimension n + 2m. Writing the elements of N as pairs (x, e) with x 2 M
and and e 2 Ex, we define the maps

i : M ! N ; i(x) = (x, 0)

p : N ! M ; p(x, e) = x.

We then obtain induced maps in cohomology and K-theory

i⇤ : H•
(N) ! H•

(M) and p⇤ : H•
(M) ! H•

(N)

i! : K(N) ! K(M) and p! : K(M) ! K(N).

8.9. Lemma. i⇤ and p⇤ and i! and p! are mutually inverse isomorphisms.
As a consequence, Kc(N) can be seen as a module over K(M) ⇠= K(N)

and H•
comp(N) can be seen as a module over H•

(M) ⇠= H•
(N).

Proof. We note that pi = I and ip is homotopic to the identity: Indeed,
consider the map ft : N ! N , given by ft(x, e) = (x, te), 0  t  1). Then
f0(x, e) = (x, 0) = ip(x, e) and f1(x, e) = (x, e). We therefore have p⇤i⇤ = I
and i⇤p⇤ = I and p!i! = I, i!p! = I. ⇤
8.10. Thom Isomorphism Theorem. As a module over K(M), Kc(N)

is generated by a single element �E 2 Kc(N), called the Bott generator ,
i.e. for every [⇠] 2 Kc(N) there exists an element [V ] 2 K(M) such that
[⇠] = �E [p!V ]. The theorem is usually stated that the map

i! : K(M) ! Kc(N), [V ] 7! �E(p
!
[V ])

is an isomorphism.
Similarly, H•

comp(N) as a H•
(M) module has a single generator, the so-

called Thom generator UE , and i!! = UE ^ p!(!).
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Proof. For details see [8, p.177f]. (Idea for the K-theoretic part) Let Ẽ⇤
=

p!(E⇤
) be the pull-back of the dual bundle E⇤ of E to N . We consider the

complex

0 ! ⇤
0
(Ẽ⇤

)
"
! ⇤

1
(Ẽ⇤

)
"
! . . .

"
! ⇤

0
(Ẽ⇤

) ! 0,

where " is defined as follows: The fiber Ẽ(x,z) of Ẽ⇤ over the point (x, z) in
N is E⇤

x. By assumption E has a hermitian inner product h·, ·i. For z 2 Ex,
we obtain an element h·, zix 2 E⇤

x. The map "(z) : ⇤k
(E⇤

x) ! ⇤
k+1

(E⇤
x) is

given by "(z)(u(x, z)) = h·, zix ^ u(x, z) for u 2 ⇤
k
(Ẽ⇤

).
Similarly as for the de Rham complex we see that this complex is exact

outside the zero section. Just like there we consider the operator
b = "+ "⇤ : ⇤even

(Ẽ⇤
) ! ⇤

odd
(Ẽ⇤

).

and let
�E = (⇤

even
(Ẽ⇤

),⇤odd
(Ẽ⇤

), b) 2 Kc(N).

For (x, z) 2 N , the map "⇤(z) is just the contraction map iz with z:

iz : ⇤
k
(Ẽ⇤

x,z) ! ⇤
k�1

(Ẽ⇤
x,z); izu(z1, . . . , zk�1) = u(z, z1, . . . , zk�1).

We note that iz satisfies
iz(u ^ v) = (izu) ^ v + (�1)

ku ^ (izv).

This implies that
b(z)2 = iz"(z) + "(z)iz = |z|2

the operator of multiplication by the scalar |z|2. In particular, b is an iso-
morphism outside the zero section in E⇤, which is a compact set.

In order to see that �E is indeed the generator of Kc(N), one needs addi-
tionally the Bott periodicity theorem.

(Sketch cohomological part) Let  be a closed form with compact support
on N . Note that  =

P
J
 JdxJ with the variables x 2 M . and fors  J

on E. z 2 E⇤
x. We define p⇤ : ⌦

•
comp(N) ! ⇤

•
(M) by integrating out the

variables in Ex:

p⇤( )(x) =

✓Z

Ex

 J

◆
dxI .

Note that Ex is of complex dimension m; as a real manifold, the dimension
is 2m. The orientation for Ex is chosen by using variables z1, . . . , zm and
z̄1, . . . , z̄m and choosing

R
imdz1^dz̄1^ . . . dzm^dzm as positive. Of course,

the integral is zero whenever |J | 6= 2m.
Thom’s theorem states that p⇤ is an isomorphism. Denote by i⇤ its inverse.

Then UE = i⇤(1) 2 H2m
comp(N) is called the Thom generator. There is an

explicit construction for UE . ⇤


