8. Basics of K-theory

8.1. The ring $K(M)$.

(i) A virtual bundle over a (not necessarily compact) manifold M is a pair $V=\left(E^{0}, E^{1}\right)$ of vector bundles over M.
(ii) V is said to be trivial, if E^{0} and E^{1} are isomorphic.
(iii) Two virtual bundles $V_{1}=\left(E_{1}^{0}, E_{1}^{1}\right)$ and $V_{2}=\left(E_{2}^{0}, E_{2}^{1}\right)$ are isomorphic, if $E_{1}^{0} \cong E_{2}^{0}$ and $E_{1}^{1} \cong E_{2}^{1}$ are isomorphic bundles.
(iv) On the set of these pairs we define the operations \oplus and \otimes of direct sum and tensor product for virtual bundles V_{1} and V_{2} as above by
$V_{1} \oplus V_{2}=\left(E_{1}^{0} \oplus E_{2}^{0}, E_{1}^{1} \oplus E_{2}^{1}\right)$
$V_{1} \otimes V_{2}=\left(\left(E_{1}^{0} \otimes E_{2}^{0}\right) \oplus\left(E_{1}^{1} \otimes E_{2}^{1}\right),\left(E_{1}^{0} \otimes E_{2}^{1}\right) \oplus\left(E_{1}^{1} \otimes E_{2}^{0}\right)\right)$.
(v) We call V_{1} and V_{2} stably isomorphic and write $V_{1} \sim V_{2}$, if there exist trivial virtual bundles W_{1} and W_{2} such that

$$
V_{1} \oplus W_{1} \cong V_{2} \oplus W_{2} .
$$

(vi) The direct sum and the tensor product define an addition and a multiplication on the equivalence classes of virtual bundles with respect to \sim. There exists a unit element, given by the class of $(0,0)$. For any class $[V]=\left[\left(E^{0}, E^{1}\right)\right]$ we have the additive inverse $-[V]=\left[\left(E^{1}, E^{0}\right)\right]$. We then obtain a commutative ring $K(M)$.

This leads to the following obvious result:
8.2. Lemma. The map $M \mapsto K(M)$ is a contravariant functor from the category of manifolds to that of commutative rings. In fact, a map $f: M \rightarrow$ N induces a pull-back of vector bundles f^{*} and then a map $f^{!}: K(N) \rightarrow$ $K(M)$ by $f^{!}\left(E^{0}, E^{1}\right)=\left(f^{*} E^{0}, f^{*} E^{1}\right)$.
8.3. Characteristic classes for virtual bundles. Now let M be compact. We can extend the definition of characteristic classes from vector bundles to virtual bundles and K-theory classes: For $V=\left(E^{0}, E^{1}\right)$ we let

$$
\begin{aligned}
& f_{+}(V)=f_{+}\left(E^{0}\right)-f_{+}\left(E^{1}\right) \\
& f_{\times}(V)=f_{\times}\left(E^{0}\right) \wedge f_{\times}^{-1}\left(E^{1}\right) .
\end{aligned}
$$

It follows from 7.21 (c) that the definition extends to K-theory.
The fact that ch is multiplicative implies that

$$
\text { ch : } K(M) \rightarrow H^{\text {even }}(M)
$$

is a ring homomorphism.
For noncompact manifolds one generally does not use the concept above, but rather the following:

8.4. K-theory with compact support.

(i) A virtual bundle with compact support over the manifold M is a triple $V=\left(E^{0}, E^{1}, a\right)$, consisting of two vector bundles E^{0}, E^{1} over M and a vector bundle morphism $a: E^{0} \rightarrow E^{1}$ which is an isomorphism outside a compact set $X \subseteq M$. The minimal such set is the support of a.
(ii) Actually, we only need to know a outside a compact set. For this reason, one often does not bother to define a everywhere: It just needs to be given on a set with compact complement. In fact, suppose we are given an isomorphism $\tilde{a}: E_{\mid M \backslash X}^{0} \rightarrow E_{\mid M \backslash X}^{1}$ for some compact X. Choose $\rho \in C^{\infty}(M)$ such that $\rho=0$ on X and $\rho=1$ outside a compact set. Then $a=\rho \tilde{a}$ can be extended to a morphism $E^{0} \rightarrow E^{1}$ which is an isomorphism outside a compact set. See also Lemma 8.6(a)
(iii) If M is compact, then the condition on a is void.
(iv) V is trivial if a is an isomorphism everywhere.
(v) The direct sum $V_{1} \oplus V_{2}$ of $V_{1}=\left(E_{1}^{0}, E_{1}^{1}, a_{1}\right)$ and $V_{2}=\left(E_{2}^{0}, E_{2}^{1}, a_{2}\right)$ is given by

$$
V_{1} \oplus V_{2}=\left(E_{1}^{0} \oplus E_{2}^{0}, E_{1}^{1} \oplus E_{2}^{1}, a_{1} \oplus a_{2}\right)
$$

(vi) Two triples V_{1} and V_{2} as above are isomorphic if there exist bundle isomorphisms

$$
\phi_{j}: E_{1}^{j} \rightarrow E_{2}^{j}, \quad j=0,1
$$

which are defined everywhere on M and satisfy

$$
\begin{equation*}
a_{2}=\phi_{1} a_{1} \phi_{0}^{-1} \text { outside a compact set. } \tag{1}
\end{equation*}
$$

(vii) Two triples V_{1} and V_{2} as above are stably isomorphic if there exist trivial triples W_{1}, W_{2} such that $V_{1} \oplus W_{1}$ and $V_{2} \oplus W_{2}$ are isomorphic. As before, we write $V_{1} \sim V_{2}$.
8.5. The group $K_{c}(M)$.
(a) The equivalence classes form an abelian group with respect to direct sums: $\left[V_{1}\right]+\left[V_{2}\right]=\left[V_{1} \oplus V_{2}\right]$. We denote this group by $K_{c}(M)$.
(b) $\quad K_{c}(M)$ is a $K(M)$-module with the definition

$$
\begin{aligned}
& {\left[\left(F^{0}, F^{1}\right)\right]\left[\left(E^{0}, E^{1}, a\right)\right]} \\
& \quad=\left[\left(F^{0} \otimes E^{0}, F^{0} \otimes E^{1}, 1 \otimes a\right)\right]-\left[\left(F^{1} \otimes E^{0}, F^{1} \otimes E^{1}, 1 \otimes a\right)\right]
\end{aligned}
$$

Proof. (a) It is clear that the equivalence classes form a semi-group. The group property follows from Lemma 8.6, below.
(b) -

8.6. Lemma.

(a) Stability: For $0 \leq t \leq 1$ let $V(t)=\left(E^{0}, E^{1}, a(t)\right)$, where $t \mapsto a(t)$ is smooth in t and $a(t)$ is an isomorphism outside some fixed compact set K (independent of t). Then $V(0)$ is isomorphic to $V(t)$ for all t. In particular $[V(0)]=[V(1)]$.
(b) Logarithmic property: Let $V_{1}=\left(E^{0}, E^{1}, a\right)$ and $V_{2}=\left(E^{1}, E^{2}, b\right)$ and let $V_{3}=\left(E^{0}, E^{2}, b a\right)$. Then

$$
\left[V_{3}\right]=\left[V_{1}\right]+\left[V_{2}\right]
$$

(c) The inverse to $\left[\left(E^{0}, E^{1}, a\right)\right]$ is $\left[\left(E^{1}, E^{0}, a^{-1}\right)\right]$.

Proof. (a) We have to find isomorphisms $\phi^{0}(t): E^{0} \rightarrow E^{0}$ and $\phi^{1}(t): E^{1} \rightarrow$ E^{1} such that

$$
a(t)=\phi^{1}(t) a(0) \phi^{0}(t)^{-1}
$$

We choose $\phi^{1}(t) \equiv I$, which reduces the task to finding $\phi^{0}(t)$ such that

$$
a(t) \phi^{0}(t)=a(0) \text { outside a compact set. }
$$

Let ρ be a smooth function which vanishes on K and is equal to 1 outside a small neighborhood of K. For $\phi^{0}(t)$ we then choose a fundamental matrix for the initial value problem

$$
\dot{\phi}^{0}=-\rho \cdot\left(a^{-1}\right) \cdot a \phi^{0} ; \quad \phi^{0}(0)=I ;
$$

(we do this for $m \in M$ in the fibers over m). We know (Analysis 2) that this system has a unique solution. On the set, where $\rho \equiv 1$, we see that $\phi(t)=a^{-1}(t) a(0)$ is a solution (hence the solution). This shows that the triples $V(0)$ and $V(t)$ are isomorphic: Equation 8.4(1) holds with $a_{2}=a(t)$ and $a_{1}=a(0)$.
(b) The triple $V_{3}=\left(E^{0}, E^{2}, b a\right)$ is equivalent to the triple $\left(E^{0} \oplus E^{1}, E^{2} \oplus\right.$ $E^{1}, b a \oplus 1$) which in turn is equivalent to $\left(E^{0} \oplus E^{1}, E^{1} \oplus E^{2},\left(\begin{array}{cc}0 & 1 \\ b a & 0\end{array}\right)\right)$. The class of $V_{1} \oplus V_{2}$ is, by definition, $\left(E^{0} \oplus E^{1}, E^{1} \oplus E^{2}, a \oplus b\right)$. Now we see that the two morphisms are homotopic, so that the triples are equivalent by part (a). In fact, consider, for $0 \leq \theta \leq \pi / 2$,

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & b
\end{array}\right)\left(\begin{array}{cc}
\cos \theta 1_{E^{1}} & \sin \theta 1_{E^{1}} \\
\sin \theta 1_{E^{1}} & \cos \theta 1_{E^{1}}
\end{array}\right)\left(\begin{array}{cc}
a & 0 \\
0 & 1
\end{array}\right): \begin{gathered}
E^{0} \\
E^{1}
\end{gathered} \rightarrow \begin{gathered}
E^{1} \\
E^{1}
\end{gathered}
$$

This is a smooth family of homomorphisms (we consider the matrix in the middle as an endomorphism of $E^{1} \oplus E^{1}$). For $\theta=0$ we obtain $a \oplus b$, and for $\theta=\pi / 2$, we obtain $\left(\begin{array}{cc}0 & 1 \\ b a & 0\end{array}\right)$.
(c) follows from (b).
8.7. Chern character for classes in $K_{c}(M)$. Let $V=\left(E^{0}, E^{1}, a\right)$, and let ∂_{0} and ∂_{1} be connections for E^{0} and E^{1}, respectively. By 7.9 the covariant derivative ∂b for the morphism $a: E^{0} \rightarrow E^{1}$, is defined by

$$
(\partial a) u=\partial_{1}(a u)-a \partial_{0} u
$$

We claim that we can always choose ∂_{0} and ∂_{1} in such a way that $\partial a=0$ outside a compact set.

Starting with any given ∂_{0} and ∂_{1}, let ρ be a smooth function which vanishes on K and is equal to 1 outside a small neighborhood of K. Define $\tilde{\partial}_{0}$ by

$$
\tilde{\partial}_{0} u=\partial_{0} u+\left(\rho a^{-1} \partial a\right) u
$$

so that the connection forms of ∂_{0} and $\tilde{\partial}_{0}$ differ by $\delta_{\Gamma}=\rho a^{-1} \partial a$. For a homomorphism a, the covariant derivative $\tilde{\partial} a$ defined by $\tilde{\partial}_{0}$ and ∂_{1} satisfies

$$
\tilde{\partial} a=\partial a-a\left(\rho a^{-1} \partial a\right)
$$

Hence $\tilde{\partial} a=0$ on the set where $\rho \equiv 1$.
Note: If ∂_{0} and ∂_{1} are hermitian connections (i.e. $E^{j}, j=0,1$, are hermitian and $d\langle u, v\rangle=\left\langle\partial_{j} u, v\right\rangle+\left\langle u, \partial_{j} v\right\rangle$) and a is unitary, then $\tilde{\partial}_{0}$ is hermitian.

The curvature $\tilde{\Omega}_{0}$ of $\tilde{\partial}_{0}$ is given by

$$
\tilde{\Omega}_{0}=\Omega_{0}+\partial\left(\rho a^{-1} \partial a\right)+\left(\rho a^{-1} \partial a\right)^{2},
$$

where Ω_{0} is the curvature of ∂_{0}. We then define the form $\operatorname{ch} \xi \in H_{\text {comp }}^{\text {even }}(M)$ by

$$
\operatorname{ch} \xi=\operatorname{tr} e^{\tilde{\omega}_{0}}-\operatorname{tr} e^{\omega_{1}} .
$$

This form has indeed compact support: Differentiating the identity $\tilde{\partial} a=0$ we obtain that

$$
0=\tilde{\partial}(\tilde{\partial} a)=\Omega_{1} a-a \tilde{\Omega}_{0} .
$$

Outside K we therefore have $\tilde{\Omega}_{0}=a^{-1} \Omega_{1} a$, so that the traces of $e^{\tilde{\omega}_{0}}$ and $e^{\tilde{\omega}_{1}}$ coincide.

It remains to check that the class is independent of the choices made.
8.8. Remark. $H_{\text {comp }}^{\text {even }}(M)$ is a $H^{\text {even }}(M)$-module and

$$
c h: K_{c}(M) \rightarrow H_{\text {comp }}^{\text {even }}(M)
$$

is a module homomorphism.
The Thom isomorphisms. Let M be a compact manifold of dimension n and E a complex vector bundle over M of rank m with a hermitian form $\langle\cdot, \cdot\rangle$. We denote by N the total space of E. This is a manifold of real dimension $n+2 m$. Writing the elements of N as pairs (x, e) with $x \in M$ and and $e \in E_{x}$, we define the maps

$$
\begin{array}{ll}
i: M \rightarrow N ; & i(x)=(x, 0) \\
p: N \rightarrow M ; & p(x, e)=x .
\end{array}
$$

We then obtain induced maps in cohomology and K-theory

$$
\begin{aligned}
i^{*}: H^{\bullet}(N) & \rightarrow H^{\bullet}(M) \text { and } \quad p^{*}: H \bullet(M)
\end{aligned} \rightarrow H^{\bullet}(N), ~ \begin{aligned}
i^{\prime} & : K(N)
\end{aligned} \rightarrow K(M) \text { and } \quad p^{\prime}: K(M) \rightarrow K(N) .
$$

8.9. Lemma. i^{*} and p^{*} and $i^{!}$and $p^{!}$are mutually inverse isomorphisms.

As a consequence, $K_{c}(N)$ can be seen as a module over $K(M) \cong K(N)$ and $H_{\text {comp }}^{\bullet}(N)$ can be seen as a module over $H^{\bullet}(M) \cong H^{\bullet}(N)$.

Proof. We note that $p i=I$ and $i p$ is homotopic to the identity: Indeed, consider the map $f_{t}: N \rightarrow N$, given by $\left.f_{t}(x, e)=(x, t e), 0 \leq t \leq 1\right)$. Then $f_{0}(x, e)=(x, 0)=i p(x, e)$ and $f_{1}(x, e)=(x, e)$. We therefore have $p^{*} i^{*}=I$ and $i^{*} p^{*}=I$ and $p^{!} i^{!}=I, i^{!} p^{!}=I$.
8.10. Thom Isomorphism Theorem. As a module over $K(M), K_{c}(N)$ is generated by a single element $\beta_{E} \in K_{c}(N)$, called the Bott generator , i.e. for every $[\xi] \in K_{c}(N)$ there exists an element $[V] \in K(M)$ such that $[\xi]=\beta_{E}\left[p^{!} V\right]$. The theorem is usually stated that the map

$$
i_{!}: K(M) \rightarrow K_{c}(N), \quad[V] \mapsto \beta_{E}\left(p^{\prime}[V]\right)
$$

is an isomorphism.
Similarly, $H_{\text {comp }}^{\bullet}(N)$ as a $H^{\bullet}(M)$ module has a single generator, the socalled Thom generator U_{E}, and $i!\omega=U_{E} \wedge p^{\prime}(\omega)$.

Proof. For details see [8, p.177f]. (Idea for the K-theoretic part) Let $\tilde{E}^{*}=$ $p^{!}\left(E^{*}\right)$ be the pull-back of the dual bundle E^{*} of E to N. We consider the complex

$$
0 \rightarrow \Lambda^{0}\left(\tilde{E}^{*}\right) \xrightarrow{\varepsilon} \Lambda^{1}\left(\tilde{E}^{*}\right) \xrightarrow{\varepsilon} \ldots \xrightarrow{\varepsilon} \Lambda^{0}\left(\tilde{E}^{*}\right) \rightarrow 0
$$

where ε is defined as follows: The fiber $\tilde{E}_{(x, z)}$ of \tilde{E}^{*} over the point (x, z) in N is E_{x}^{*}. By assumption E has a hermitian inner product $\langle\cdot, \cdot\rangle$. For $z \in E_{x}$, we obtain an element $\langle\cdot, z\rangle_{x} \in E_{x}^{*}$. The map $\varepsilon(z): \Lambda^{k}\left(E_{x}^{*}\right) \rightarrow \Lambda^{k+1}\left(E_{x}^{*}\right)$ is given by $\varepsilon(z)(u(x, z))=\langle\cdot, z\rangle_{x} \wedge u(x, z)$ for $u \in \Lambda^{k}\left(\tilde{E}^{*}\right)$.

Similarly as for the de Rham complex we see that this complex is exact outside the zero section. Just like there we consider the operator

$$
b=\varepsilon+\varepsilon^{*}: \Lambda^{\text {even }}\left(\tilde{E}^{*}\right) \rightarrow \Lambda^{\text {odd }}\left(\tilde{E}^{*}\right)
$$

and let

$$
\beta_{E}=\left(\Lambda^{\text {even }}\left(\tilde{E}^{*}\right), \Lambda^{\text {odd }}\left(\tilde{E}^{*}\right), b\right) \in K_{c}(N)
$$

For $(x, z) \in N$, the map $\varepsilon^{*}(z)$ is just the contraction map i_{z} with z :

$$
i_{z}: \Lambda^{k}\left(\tilde{E}_{x, z}^{*}\right) \rightarrow \Lambda^{k-1}\left(\tilde{E}_{x, z}^{*}\right) ; \quad i_{z} u\left(z_{1}, \ldots, z_{k-1}\right)=u\left(z, z_{1}, \ldots, z_{k-1}\right)
$$

We note that i_{z} satisfies

$$
i_{z}(u \wedge v)=\left(i_{z} u\right) \wedge v+(-1)^{k} u \wedge\left(i_{z} v\right)
$$

This implies that

$$
b(z)^{2}=i_{z} \varepsilon(z)+\varepsilon(z) i_{z}=|z|^{2}
$$

the operator of multiplication by the scalar $|z|^{2}$. In particular, b is an isomorphism outside the zero section in E^{*}, which is a compact set.

In order to see that β_{E} is indeed the generator of $K_{c}(N)$, one needs additionally the Bott periodicity theorem.
(Sketch cohomological part) Let ψ be a closed form with compact support on N. Note that $\psi=\sum_{J} \psi_{J} d x^{J}$ with the variables $x \in M$. and fors ψ_{J} on $E . z \in E_{x}^{*}$. We define $p_{*}: \Omega_{c o m p}^{\bullet}(N) \rightarrow \Lambda^{\bullet}(M)$ by integrating out the variables in E_{x} :

$$
p_{*}(\psi)(x)=\left(\int_{E_{x}} \psi_{J}\right) d x^{I}
$$

Note that E_{x} is of complex dimension m; as a real manifold, the dimension is $2 m$. The orientation for E_{x} is chosen by using variables z_{1}, \ldots, z_{m} and $\bar{z}_{1}, \ldots, \bar{z}_{m}$ and choosing $\int i^{m} d z^{1} \wedge d \bar{z}^{1} \wedge \ldots d z^{m} \wedge d \bar{z}^{m}$ as positive. Of course, the integral is zero whenever $|J| \neq 2 m$.

Thom's theorem states that p_{*} is an isomorphism. Denote by i_{*} its inverse. Then $U_{E}=i_{*}(1) \in H_{\text {comp }}^{2 m}(N)$ is called the Thom generator. There is an explicit construction for U_{E}.

