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8. BASICS OF K-THEORY
8.1. The ring K(M).

(i) A wirtual bundle over a (not necessarily compact) manifold M is a pair
V = (E° E") of vector bundles over M.

(ii) V is said to be trivial, if E° and E! are isomorphic.

(iii) Two virtual bundles Vi = (EY, E{) and Vo = (E3, E}) are isomorphic,
if BY =~ EY and E] = Ej are isomorphic bundles.

(iv) On the set of these pairs we define the operations @ and ® of direct
sum and tensor product for virtual bundles V; and V5 as above by
ViaV, = (BY® B} Bl @ B)

VieVy, = ((BY®Ey)® (B ® By), (BY ® B) & (Bj @ E)).

(v)  We call Vi and Va stably isomorphic and write V) ~ Vs, if there exist

trivial virtual bundles W7 and W5 such that

VieW, =Vyod Ws.

(vi) The direct sum and the tensor product define an addition and a mul-
tiplication on the equivalence classes of virtual bundles with respect
to ~. There exists a unit element, given by the class of (0,0). For any
class [V] = [(E?, E')] we have the additive inverse —[V] = [(E!, EY)].
We then obtain a commutative ring K (M).

This leads to the following obvious result:

8.2. Lemma. The map M — K (M) is a contravariant functor from the
category of manifolds to that of commutative rings. In fact, a map f: M —
N induces a pull-back of vector bundles f* and then a map f': K(N) —
K(M) by f(E° E') = (f*E°, f*E").

8.3. Characteristic classes for virtual bundles. Now let M be compact.
We can extend the definition of characteristic classes from vector bundles to
virtual bundles and K-theory classes: For V = (EY, E') we let

F+(V) = fe(BY) - fo(EY)
(V) = fu(E)AFHED.
It follows from 7.21(c) that the definition extends to K-theory.
The fact that ch is multiplicative implies that
ch: K(M) — H®"(M)
is a ring homomorphism.
For noncompact manifolds one generally does not use the concept above,
but rather the following:
8.4. K-theory with compact support.

(i) A virtual bundle with compact support over the manifold M is a triple
V = (E° E',a), consisting of two vector bundles EV, E' over M and a
vector bundle morphism a : E° — E' which is an isomorphism outside
a compact set X C M. The minimal such set is the support of a.
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(ii)  Actually, we only need to know a outside a compact set. For this
reason, one often does not bother to define a everywhere: It just needs
to be given on a set with compact complement. In fact, suppose we
are given an isomorphism a : EI(}W\ x = E|1M\  for some compact X.

Choose p € C*°(M) such that p = 0 on X and p = 1 outside a compact
set. Then a = pa can be extended to a morphism E° — E' which is
an isomorphism outside a compact set. See also Lemma 8.6(a)

(iii) If M is compact, then the condition on a is void.
(iv) V is trivial if a is an isomorphism everywhere.
(v) The direct sum V4 @ Vi of Vi = (EY, E},a1) and Vo = (EY, E3d, as) is
given by
Vi@ Ve = (B{ @ ES, Bi ® By, a1 ® az).
(vi) Two triples V; and V, as above are isomorphic if there exist bundle
isomorphisms ' '
(bj:E{ —>E%, 73 =0,1,
which are defined everywhere on M and satisfy

(1) ag = gzﬁlalqﬁgl outside a compact set.

(vii) Two triples Vi and V, as above are stably isomorphic if there exist
trivial triples W7, W5 such that V; & Wy and Vo @ Wy are isomorphic.
As before, we write V; ~ V5.
8.5. The group K .(M).
(a)  The equivalence classes form an abelian group with respect to direct
sums: [V1] 4 [Vo] = [V1 @ Va]. We denote this group by K.(M).
(b)  K.(M) is a K(M)-module with the definition
(P, FY)[(E, B, )
= [(F'eE Y F'eFE 1®a)] - [(F'®E’, F'® E',1®a)].
Proof. (a) It is clear that the equivalence classes form a semi-group. The
group property follows from Lemma 8.6, below.
(b) - O
8.6. Lemma.
(a)  Stability: For 0 <t <1 let V(t) = (E°, E',a(t)), where t + a(t) is
smooth in t and a(t) is an isomorphism outside some fixed compact
set K (independent of t). Then V(0) is isomorphic to V(t) for all t.
In particular [V(0)] = [V(1)].
(b)  Logarithmic property: Let V; = (E°, E' a) and Vo = (E', E?,b) and
let V5 = (E°, E2 ba). Then
(V3] = [Wi] + [Va].
(c)  The inverse to [(E°, E',a)] is [(E', E°,a™1)].
Proof. (a) We have to find isomorphisms ¢°(t) : E° — E°? and ¢'(t) : E' —
E' such that
a(t) = ¢! (£)a(0)e"(t) .
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We choose ¢!(t) = I, which reduces the task to finding ¢°(¢) such that
a(t)¢°(t) = a(0) outside a compact set.

Let p be a smooth function which vanishes on K and is equal to 1 outside
a small neighborhood of K. For ¢°(t) we then choose a fundamental matrix
for the initial value problem
o' =—p-(a7)ad"; ¢°(0) =1

(we do this for m € M in the fibers over m). We know (Analysis 2) that
this system has a unique solution. On the set, where p = 1, we see that
#(t) = a=1(t)a(0) is a solution (hence the solution). This shows that the
triples V(0) and V/(t) are isomorphic: Equation 8.4(1) holds with as = a(t)
and a1 = a(0).

(b) The triple V3 = (E°, E?, ba) is equivalent to the triple (E° @ E', E? ®
E' ba @ 1) which in turn is equivalent to <EO ®EYE'o E?, (b(; é))
The class of V; @ V4 is, by definition, (E° @ E', E' © E%,a ®b). Now we see
that the two morphisms are homotopic, so that the triples are equivalent by
part (a). In fact, consider, for 0 < 8 < 7/2,

0 1
1 0\ fcosOlp sinflp a 0 E E
0 b)\sinf1p cosorp)lo 1) 5 7 5
E E El E2
This is a smooth family of homomorphisms (we consider the matrix in the
middle as an endomorphism of E' @ E'). For § = 0 we obtain a @ b, and for
: 0 1
0 = /2, we obtain (ba 0).
(c) follows from (b). O

8.7. Chern character for classes in K.(M). Let V = (E°, E',a), and let
do and 01 be connections for E° and E', respectively. By 7.9 the covariant
derivative Ob for the morphism a : E° — E!, is defined by

(Oa)u = 01 (au) — adyu.

We claim that we can always choose dy and 9; in such a way that da =0
outside a compact set.

Starting with any given 9y and 0p, let p be a smooth function which
vanishes on K and is equal to 1 outside a small neighborhood of K. Define
do by

dou = Ogu + (pa~tda)u

so that the connection forms of dy and 50~ differ by or = pa~'0a. For a
homomorphism a, the covariant derivative da defined by Jy and 0; satisfies

da = da — a(pa~1da).

Hence da = 0 on the set where p=1.

Note: If 9y and O; are hermitian connections (i.e. E’, j = 0,1, are
hermitian and d{u,v) = (dju,v) + (u,d;v)) and a is unitary, then Jy is
hermitian.
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The curvature Qo of 50 is given by
Qo = Qo + d(pa~10a) + (pa~1da)?,
where () is the curvature of dy. We then define the form ch{ € HZ0 (M)
by
ch& = tre® — tre®t.
This form has indeed compact support: Differentiating the identity da =0
we obtain that
0= 0(da) = Qya — ally.

Outside K we therefore have Qg = a"1Q;a, so that the traces of €° and e

coincide.
It remains to check that the class is independent of the choices made.

8.8. Remark. HZ o0 (M) is a H®"(M)-module and
ch: K.(M)— Hoyer (M)

comp

is a module homomorphism.

The Thom isomorphisms. Let M be a compact manifold of dimension
n and E a complex vector bundle over M of rank m with a hermitian form
(-,-). We denote by N the total space of E. This is a manifold of real
dimension n + 2m. Writing the elements of N as pairs (z,e) with x € M
and and e € F,, we define the maps

i: M — N, i(z) = (z,0)
p: N — M, p(x,e) = x.
We then obtain induced maps in cohomology and K-theory

i*: H*(N) — H*(M) and p*:H®*(M)— H*(N)
i': K(N) = K(M) and p': K(M)— K(N).
8.9. Lemma. i* and p* and i' and p' are mutually inverse isomorphisms.
As a consequence, K.(N) can be seen as a module over K (M) = K(N)
and H?, (N) can be seen as a module over H*(M) = H*(N).

comp
Proof. We note that pi = I and 4p is homotopic to the identity: Indeed,
consider the map f; : N — N, given by fi(z,e) = (z,te), 0 < ¢t < 1). Then
fo(xz,e) = (z,0) = ip(x,e) and fi(x,e) = (z,e). We therefore have p*i* = I
and i*p* = I and p'i' =1I,i'p' = I. O

8.10. Thom Isomorphism Theorem. As a module over K(M), K.(N)
is generated by a single element Sp € K.(N), called the Bott generator ,
i.e. for every [{] € K.(N) there exists an element [V] € K(M) such that
[€] = Be[p'V]. The theorem is usually stated that the map

i K(M) = K(N),  [V]= Bp('[V])

is an isomorphism.
Similarly, H,,,,(N) as a H*(M) module has a single generator, the so-

called Thom generator Ug, and iyw = Ug A p' (w).
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Proof. For details see [8, p.177f]. (Idea for the K-theoretic part) Let E* =
p'(E*) be the pull-back of the dual bundle E* of E to N. We consider the
complex

0= AYEHSAYEHS .S AE) O,
where ¢ is defined as follows: The fiber E~(x7z) of E* over the point (z,z) in
N is EZ. By assumption F has a hermitian inner product (-,-). For z € E,,
we obtain an element (-,z), € EX. The map (z) : AF(E}) — AFTY(E?) is
given by e(2)(u(x, 2)) = (-, 2)z Au(z, z) for u € AF(E*).
Similarly as for the de Rham complex we see that this complex is exact
outside the zero section. Just like there we consider the operator

b=c+¢e": Ae”e”(E*) — AC(E).
and let ~ 3
ﬁE — (Aeven(E*),Aodd(E*)’ b) c KC(N)
For (z,z) € N, the map €*(z) is just the contraction map i, with z:
iy Ak(E;Z) — Ak_l(E;’z); (21, .oy 2p—1) = u(2, 21,0 vy 2Zk—1)-
We note that i, satisfies
i(uAv) = (i;u) Av 4 (=1)Fu A (i),
This implies that
b(2)? = ie(2) +e(2)i, = |2
the operator of multiplication by the scalar |z|?. In particular, b is an iso-
morphism outside the zero section in E*, which is a compact set.
In order to see that g is indeed the generator of K.(IN), one needs addi-
tionally the Bott periodicity theorem.
(Sketch cohomological part) Let ¢ be a closed form with compact support
on N. Note that ¢ =, Y ydx’ with the variables « € M. and fors 1)y

on E. z € E}. We define p, : N) — A*(M) by integrating out the
variables in F,:

Zomp(

po = ([ x vr) o'

Note that E, is of complex dimension m; as a real manifold, the dimension
is 2m. The orientation for E, is chosen by using variables z1,...,z, and
Z1,...,Zm and choosing [ imdzP AdZY AL dZ™ AdE™ as positive. Of course,
the integral is zero whenever |J| # 2m.

Thom'’s theorem states that p, is an isomorphism. Denote by i, its inverse.
Then Ug = i.(1) € HZm (N) is called the Thom generator. There is an
explicit construction for Ug. O



