8. Basics of K-theory

8.1. The ring K(M).

- (i) A virtual bundle over a (not necessarily compact) manifold M is a pair $V = (E^0, E^1)$ of vector bundles over M.
- (ii) V is said to be *trivial*, if E^0 and E^1 are isomorphic.
- (iii) Two virtual bundles $V_1 = (E_1^0, E_1^1)$ and $V_2 = (E_2^0, E_2^1)$ are *isomorphic*, if $E_1^0 \cong E_2^0$ and $E_1^1 \cong E_2^1$ are isomorphic bundles.
- (iv) On the set of these pairs we define the operations \oplus and \otimes of *direct* sum and *tensor product* for virtual bundles V_1 and V_2 as above by

 $V_1 \oplus V_2 = (E_1^0 \oplus E_2^0, E_1^1 \oplus E_2^1)$ $V_1 \otimes V_2 = ((E_1^0 \otimes E_2^0) \oplus (E_1^1 \otimes E_2^1), (E_1^0 \otimes E_2^1) \oplus (E_1^1 \otimes E_2^0)).$

(v) We call V_1 and V_2 stably isomorphic and write $V_1 \sim V_2$, if there exist trivial virtual bundles W_1 and W_2 such that

$$V_1 \oplus W_1 \cong V_2 \oplus W_2.$$

(vi) The direct sum and the tensor product define an addition and a multiplication on the equivalence classes of virtual bundles with respect to \sim . There exists a unit element, given by the class of (0,0). For any class $[V] = [(E^0, E^1)]$ we have the additive inverse $-[V] = [(E^1, E^0)]$. We then obtain a commutative ring K(M).

This leads to the following obvious result:

8.2. Lemma. The map $M \mapsto K(M)$ is a contravariant functor from the category of manifolds to that of commutative rings. In fact, a map $f: M \to N$ induces a pull-back of vector bundles f^* and then a map $f^!: K(N) \to K(M)$ by $f^!(E^0, E^1) = (f^*E^0, f^*E^1)$.

8.3. Characteristic classes for virtual bundles. Now let M be compact. We can extend the definition of characteristic classes from vector bundles to virtual bundles and K-theory classes: For $V = (E^0, E^1)$ we let

$$f_{+}(V) = f_{+}(E^{0}) - f_{+}(E^{1})$$

$$f_{\times}(V) = f_{\times}(E^{0}) \wedge f_{\times}^{-1}(E^{1}).$$

It follows from 7.21(c) that the definition extends to K-theory.

The fact that ch is multiplicative implies that

$$ch: K(M) \to H^{even}(M)$$

is a ring homomorphism.

For *noncompact* manifolds one generally does not use the concept above, but rather the following:

8.4. K-theory with compact support.

(i) A virtual bundle with compact support over the manifold M is a triple $V = (E^0, E^1, a)$, consisting of two vector bundles E^0, E^1 over M and a vector bundle morphism $a : E^0 \to E^1$ which is an isomorphism outside a compact set $X \subseteq M$. The minimal such set is the support of a.

- (ii) Actually, we only need to know a outside a compact set. For this reason, one often does not bother to define a everywhere: It just needs to be given on a set with compact complement. In fact, suppose we are given an isomorphism $\tilde{a}: E^0_{|M\setminus X} \to E^1_{|M\setminus X}$ for some compact X. Choose $\rho \in C^{\infty}(M)$ such that $\rho = 0$ on X and $\rho = 1$ outside a compact set. Then $a = \rho \tilde{a}$ can be extended to a morphism $E^0 \to E^1$ which is an isomorphism outside a compact set. See also Lemma 8.6(a)
- (iii) If M is compact, then the condition on a is void.
- (iv) V is trivial if a is an isomorphism everywhere.
- (v) The direct sum $V_1 \oplus V_2$ of $V_1 = (E_1^0, E_1^1, a_1)$ and $V_2 = (E_2^0, E_2^1, a_2)$ is given by

$$V_1 \oplus V_2 = (E_1^0 \oplus E_2^0, E_1^1 \oplus E_2^1, a_1 \oplus a_2).$$

(vi) Two triples V_1 and V_2 as above are *isomorphic* if there exist bundle isomorphisms

$$\phi_j: E_1^j \to E_2^j, \quad j = 0, 1,$$

which are defined everywhere on M and satisfy

(1)
$$a_2 = \phi_1 a_1 \phi_0^{-1}$$
 outside a compact set.

(vii) Two triples V_1 and V_2 as above are *stably isomorphic* if there exist trivial triples W_1 , W_2 such that $V_1 \oplus W_1$ and $V_2 \oplus W_2$ are isomorphic. As before, we write $V_1 \sim V_2$.

8.5. The group $K_c(M)$.

- (a) The equivalence classes form an abelian group with respect to direct sums: $[V_1] + [V_2] = [V_1 \oplus V_2]$. We denote this group by $K_c(M)$.
- (b) $K_c(M)$ is a K(M)-module with the definition

$$[(F^0, F^1)][(E^0, E^1, a)] = [(F^0 \otimes E^0, F^0 \otimes E^1, 1 \otimes a)] - [(F^1 \otimes E^0, F^1 \otimes E^1, 1 \otimes a)].$$

Proof. (a) It is clear that the equivalence classes form a semi-group. The group property follows from Lemma 8.6, below.

(b) – **8.6. Lemma**.

- (a) Stability: For $0 \le t \le 1$ let $V(t) = (E^0, E^1, a(t))$, where $t \mapsto a(t)$ is smooth in t and a(t) is an isomorphism outside some fixed compact set K (independent of t). Then V(0) is isomorphic to V(t) for all t. In particular [V(0)] = [V(1)].
- (b) Logarithmic property: Let $V_1 = (E^0, E^1, a)$ and $V_2 = (E^1, E^2, b)$ and let $V_3 = (E^0, E^2, ba)$. Then

$$[V_3] = [V_1] + [V_2].$$

(c) The inverse to $[(E^0, E^1, a)]$ is $[(E^1, E^0, a^{-1})]$.

Proof. (a) We have to find isomorphisms $\phi^0(t):E^0\to E^0$ and $\phi^1(t):E^1\to E^1$ such that

$$a(t) = \phi^1(t)a(0)\phi^0(t)^{-1}.$$

We choose $\phi^1(t) \equiv I$, which reduces the task to finding $\phi^0(t)$ such that

$$a(t)\phi^0(t) = a(0)$$
 outside a compact set.

Let ρ be a smooth function which vanishes on K and is equal to 1 outside a small neighborhood of K. For $\phi^0(t)$ we then choose a fundamental matrix for the initial value problem

$$\dot{\phi}^0 = -\rho \cdot (a^{-1}) \dot{a} \phi^0; \quad \phi^0(0) = I;$$

(we do this for $m \in M$ in the fibers over m). We know (Analysis 2) that this system has a unique solution. On the set, where $\rho \equiv 1$, we see that $\phi(t) = a^{-1}(t)a(0)$ is a solution (hence *the* solution). This shows that the triples V(0) and V(t) are isomorphic: Equation 8.4(1) holds with $a_2 = a(t)$ and $a_1 = a(0)$.

(b) The triple $V_3 = (E^0, E^2, ba)$ is equivalent to the triple $(E^0 \oplus E^1, E^2 \oplus E^1, ba \oplus 1)$ which in turn is equivalent to $\left(E^0 \oplus E^1, E^1 \oplus E^2, \begin{pmatrix} 0 & 1 \\ ba & 0 \end{pmatrix}\right)$. The class of $V_1 \oplus V_2$ is, by definition, $(E^0 \oplus E^1, E^1 \oplus E^2, a \oplus b)$. Now we see that the two morphisms are homotopic, so that the triples are equivalent by part (a). In fact, consider, for $0 \le \theta \le \pi/2$,

This is a smooth family of homomorphisms (we consider the matrix in the middle as an endomorphism of $E^1 \oplus E^1$). For $\theta = 0$ we obtain $a \oplus b$, and for $\theta = \pi/2$, we obtain $\begin{pmatrix} 0 & 1 \\ ba & 0 \end{pmatrix}$. (c) follows from (b).

8.7. Chern character for classes in $K_c(M)$. Let $V = (E^0, E^1, a)$, and let ∂_0 and ∂_1 be connections for E^0 and E^1 , respectively. By 7.9 the covariant derivative ∂b for the morphism $a : E^0 \to E^1$, is defined by

$$(\partial a)u = \partial_1(au) - a\partial_0 u.$$

We claim that we can always choose ∂_0 and ∂_1 in such a way that $\partial a = 0$ outside a compact set.

Starting with any given ∂_0 and ∂_1 , let ρ be a smooth function which vanishes on K and is equal to 1 outside a small neighborhood of K. Define $\tilde{\partial}_0$ by

$$\tilde{\partial}_0 u = \partial_0 u + (\rho a^{-1} \partial a) u$$

so that the connection forms of ∂_0 and $\tilde{\partial}_0$ differ by $\delta_{\Gamma} = \rho a^{-1} \partial a$. For a homomorphism a, the covariant derivative $\tilde{\partial} a$ defined by $\tilde{\partial}_0$ and ∂_1 satisfies

$$\partial a = \partial a - a(\rho a^{-1} \partial a)$$

Hence $\tilde{\partial} a = 0$ on the set where $\rho \equiv 1$.

Note: If ∂_0 and ∂_1 are hermitian connections (i.e. E^j , j = 0, 1, are hermitian and $d\langle u, v \rangle = \langle \partial_j u, v \rangle + \langle u, \partial_j v \rangle$) and a is unitary, then $\tilde{\partial}_0$ is hermitian.

54

The curvature $\tilde{\Omega}_0$ of $\tilde{\partial}_0$ is given by

$$\tilde{\Omega}_0 = \Omega_0 + \partial(\rho a^{-1} \partial a) + (\rho a^{-1} \partial a)^2,$$

where Ω_0 is the curvature of ∂_0 . We then define the form $\operatorname{ch} \xi \in H^{even}_{comp}(M)$ by

$$\operatorname{ch} \xi = \operatorname{tr} e^{\tilde{\omega}_0} - \operatorname{tr} e^{\omega_1}$$

This form has indeed compact support: Differentiating the identity $\partial a = 0$ we obtain that

$$0 = \tilde{\partial}(\tilde{\partial}a) = \Omega_1 a - a\tilde{\Omega}_0.$$

Outside K we therefore have $\tilde{\Omega}_0 = a^{-1}\Omega_1 a$, so that the traces of $e^{\tilde{\omega}_0}$ and $e^{\tilde{\omega}_1}$ coincide.

It remains to check that the class is independent of the choices made.

8.8. Remark. $H_{comp}^{even}(M)$ is a $H^{even}(M)$ -module and

$$ch: K_c(M) \to H^{even}_{comp}(M)$$

is a module homomorphism.

The Thom isomorphisms. Let M be a compact manifold of dimension n and E a complex vector bundle over M of rank m with a hermitian form $\langle \cdot, \cdot \rangle$. We denote by N the total space of E. This is a manifold of real dimension n + 2m. Writing the elements of N as pairs (x, e) with $x \in M$ and and $e \in E_x$, we define the maps

$$i: M \to N;$$
 $i(x) = (x, 0)$
 $p: N \to M;$ $p(x, e) = x.$

We then obtain induced maps in cohomology and K-theory

$$i^*: H^{ullet}(N) \to H^{ullet}(M) \text{ and } p^*: H^{ullet}(M) \to H^{ullet}(N)$$

 $i^!: K(N) \to K(M) \text{ and } p^!: K(M) \to K(N).$

8.9. Lemma. i^* and p^* and $i^!$ and $p^!$ are mutually inverse isomorphisms. As a consequence, $K_c(N)$ can be seen as a module over $K(M) \cong K(N)$ and $H^{\bullet}_{comp}(N)$ can be seen as a module over $H^{\bullet}(M) \cong H^{\bullet}(N)$.

Proof. We note that pi = I and ip is homotopic to the identity: Indeed, consider the map $f_t : N \to N$, given by $f_t(x, e) = (x, te), 0 \le t \le 1$). Then $f_0(x, e) = (x, 0) = ip(x, e)$ and $f_1(x, e) = (x, e)$. We therefore have $p^*i^* = I$ and $i^*p^* = I$ and p!i! = I, i!p! = I.

8.10. Thom Isomorphism Theorem. As a module over K(M), $K_c(N)$ is generated by a single element $\beta_E \in K_c(N)$, called the Bott generator, i.e. for every $[\xi] \in K_c(N)$ there exists an element $[V] \in K(M)$ such that $[\xi] = \beta_E[p!V]$. The theorem is usually stated that the map

$$i_!: K(M) \to K_c(N), \quad [V] \mapsto \beta_E(p^![V])$$

is an isomorphism.

Similarly, $H^{\bullet}_{comp}(N)$ as a $H^{\bullet}(M)$ module has a single generator, the socalled Thom generator U_E , and $i_1\omega = U_E \wedge p^!(\omega)$. *Proof.* For details see [8, p.177f]. (Idea for the K-theoretic part) Let $\tilde{E}^* = p!(E^*)$ be the pull-back of the dual bundle E^* of E to N. We consider the complex

$$0 \to \Lambda^0(\tilde{E}^*) \xrightarrow{\varepsilon} \Lambda^1(\tilde{E}^*) \xrightarrow{\varepsilon} \dots \xrightarrow{\varepsilon} \Lambda^0(\tilde{E}^*) \to 0,$$

where ε is defined as follows: The fiber $\tilde{E}_{(x,z)}$ of \tilde{E}^* over the point (x, z) in N is E_x^* . By assumption E has a hermitian inner product $\langle \cdot, \cdot \rangle$. For $z \in E_x$, we obtain an element $\langle \cdot, z \rangle_x \in E_x^*$. The map $\varepsilon(z) : \Lambda^k(E_x^*) \to \Lambda^{k+1}(E_x^*)$ is given by $\varepsilon(z)(u(x,z)) = \langle \cdot, z \rangle_x \wedge u(x,z)$ for $u \in \Lambda^k(\tilde{E}^*)$.

Similarly as for the de Rham complex we see that this complex is exact outside the zero section. Just like there we consider the operator

$$b = \varepsilon + \varepsilon^* : \Lambda^{even}(\tilde{E}^*) \to \Lambda^{odd}(\tilde{E}^*).$$

and let

$$\beta_E = (\Lambda^{even}(\tilde{E}^*), \Lambda^{odd}(\tilde{E}^*), b) \in K_c(N).$$

For $(x, z) \in N$, the map $\varepsilon^*(z)$ is just the contraction map i_z with z:

$$i_z : \Lambda^k(\tilde{E}^*_{x,z}) \to \Lambda^{k-1}(\tilde{E}^*_{x,z}); \quad i_z u(z_1, \dots, z_{k-1}) = u(z, z_1, \dots, z_{k-1}).$$

We note that i_z satisfies

$$i_z(u \wedge v) = (i_z u) \wedge v + (-1)^k u \wedge (i_z v).$$

This implies that

$$b(z)^2 = i_z \varepsilon(z) + \varepsilon(z)i_z = |z|^2$$

the operator of multiplication by the scalar $|z|^2$. In particular, b is an isomorphism outside the zero section in E^* , which is a compact set.

In order to see that β_E is indeed the generator of $K_c(N)$, one needs additionally the Bott periodicity theorem.

(Sketch cohomological part) Let ψ be a closed form with compact support on N. Note that $\psi = \sum_{J} \psi_{J} dx^{J}$ with the variables $x \in M$. and fors ψ_{J} on E. $z \in E_{x}^{*}$. We define $p_{*} : \Omega_{comp}^{\bullet}(N) \to \Lambda^{\bullet}(M)$ by integrating out the variables in E_{x} :

$$p_*(\psi)(x) = \left(\int_{E_x} \psi_J\right) dx^I.$$

Note that E_x is of complex dimension m; as a real manifold, the dimension is 2m. The orientation for E_x is chosen by using variables z_1, \ldots, z_m and $\bar{z}_1, \ldots, \bar{z}_m$ and choosing $\int i^m dz^1 \wedge d\bar{z}^1 \wedge \ldots dz^m \wedge d\bar{z}^m$ as positive. Of course, the integral is zero whenever $|J| \neq 2m$.

Thom's theorem states that p_* is an isomorphism. Denote by i_* its inverse. Then $U_E = i_*(1) \in H^{2m}_{comp}(N)$ is called the Thom generator. There is an explicit construction for U_E .