6. Elliptic Complexes

6.1. Definition. Let E^{0}, E^{1}, \ldots, be vector bundles over M. A complex of pseudodifferential operators is a finite sequence
$(1) 0 \rightarrow C^{\infty}\left(M, E^{0}\right) \xrightarrow{P^{0}} C^{\infty}\left(M, E^{1}\right) \xrightarrow{P^{1}} \ldots \xrightarrow{P^{m-1}} C^{\infty}\left(M, E^{m}\right) \rightarrow 0$
of pseudodifferential operators P^{j} such that $P^{j+1} P^{j}=0$, i.e. im $P^{j} \subseteq$ $\operatorname{ker} P^{j+1}$.

It will make the considerations in 6.4 , below, easier, if we assume that all P^{j} have the same order, say m. In practically appearing cases, we mostly have $m=1$; otherwise it can easily be achieved with the help of order reducing operators.

The complex is called elliptic, if the associated complex of symbol maps

$$
\begin{equation*}
0 \rightarrow \pi^{*} E^{0} \xrightarrow{\sigma\left(P^{0}\right)} \pi^{*} E^{1} \xrightarrow{\sigma\left(P^{1}\right)} \ldots \xrightarrow{\sigma\left(P^{m-1}\right)} \pi^{*} E^{m} \rightarrow 0 \tag{2}
\end{equation*}
$$

over $T^{*} M \backslash 0$ is exact, i.e. $\operatorname{im} \sigma\left(P^{j}\right)=\operatorname{ker} \sigma\left(P^{j+1}\right)$. Here $\pi: T^{*} M \backslash 0 \rightarrow M$ is the map to the base point.

In the sequel, we will also assume that the vector bundles have a hermitian structure, i.e. there is a scalar product on every fiber, varying smoothly with the base point.
6.2. Example. Let $\Lambda^{k}=\Lambda^{k} T^{*} M$ be the bundle of k-forms over M. As usual, we write $\Omega^{k} M=C^{\infty}\left(M, \Lambda^{k}\right)$ Consider the de Rham complex

$$
0 \rightarrow \Omega^{0} M \xrightarrow{d} \Omega^{1} M \xrightarrow{d} \ldots \xrightarrow{d} \Omega^{n} M \rightarrow 0
$$

where $n=\operatorname{dim} M$. The associated symbol complex is

$$
0 \rightarrow \pi^{*} \Lambda^{0} \xrightarrow{i \xi \wedge} \pi^{*} \Lambda^{1} \xrightarrow{i \xi \wedge} \ldots \xrightarrow{I \xi \wedge} \pi^{*} \Lambda^{n} \rightarrow 0,
$$

cf. Example 5.31. As $\xi \wedge \xi=0$ for every $\xi \in T^{*} M \backslash 0$, we have $\operatorname{im} \sigma\left(d^{j}\right) \subseteq$ $\operatorname{ker} \sigma\left(d^{j+1}\right)$. In order to see the reverse inclusion assume that $\xi \wedge \eta=0$ for a form $\eta=\sum f_{I} d x^{I}$ where the sum is over all $I=\left(i_{1}, \ldots, i_{k}\right)$ with $1 \leq i_{1}<\ldots<i_{k} \leq n$. By a linear change of coordinates we may assume that $\xi=d x^{1}$. The fact that $\xi \wedge \eta=0$ means that $i_{1}=1$ for all I with $f_{I} \neq 0$. Hence $\eta \in \operatorname{im}\left(d x^{1} \wedge\right)$.
6.3. Example. Every elliptic pseudodifferential operator $P: C^{\infty}\left(M, E^{1}\right) \rightarrow$ $C^{\infty}\left(M, E^{2}\right)$ defines an elliptic complex

$$
0 \rightarrow C^{\infty}\left(M, E^{1}\right) \rightarrow C^{\infty}\left(M, E^{2}\right) \rightarrow 0
$$

In fact,

$$
0 \rightarrow \pi^{*} E^{1} \xrightarrow{\sigma(P)} \pi^{*} E^{2} \rightarrow 0
$$

is exact, since $\sigma(P)(x, \xi)$ is invertible.
6.4. From Complexes to operators. To every complex we can associate operators in a canonical way: Write

$$
\mathscr{E}=\bigoplus_{j} E^{j}, \mathscr{E}^{\text {even }}=\bigoplus_{j} E^{2 j}, \mathscr{E}^{\text {odd }}=\bigoplus_{j} E^{2 j+1}
$$

and define the $(m+1) \times(m+1)$ operator matrices
$P=\left(\begin{array}{ccccc}0 & 0 & \ldots & 0 & 0 \\ P^{0} & 0 & \ldots & 0 & 0 \\ 0 & P^{1} & \ldots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \ldots & P^{m-1} & 0\end{array}\right), \quad P^{*}=\left(\begin{array}{cccccc}0 & P^{0 *} & 0 & \ldots & 0 & 0 \\ 0 & 0 & P^{1 *} & \ldots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \ldots & 0 & P^{m-1 *} \\ 0 & 0 & 0 & \ldots & 0 & 0\end{array}\right)$,
where $P^{j *}: C^{\infty}\left(M, E^{j+1}\right) \rightarrow C^{\infty}\left(M, E^{j}\right)$ is the formal adjoint to P^{j}. The identity $P^{j+1} P^{j}$ implies that $P^{2}=0=\left(P^{*}\right)^{2}$. Then define

$$
\Delta=\left(P+P^{*}\right)^{2}=P^{*} P+P P^{*}
$$

A short computation shows that
$\Delta=\left(\begin{array}{ccccc}P^{0 *} P^{0} & 0 & \ldots & 0 & 0 \\ 0 & P^{1 *} P^{1}+P^{0} P^{0 *} & \ldots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \ldots & P^{m-1 *} P^{m-1}+P^{m-2} P^{m-2 *} & 0 \\ 0 & 0 & \cdots & 0 & P^{m-1} P^{m-1 *}\end{array}\right)$
Δ is called the Hodge-Laplace operator, in particular, if the P_{j} are the exterior derivatives on forms.

Assuming - as we do - that all P^{j} are of order m, we see that Δ is a pseudodifferentialoperator of order $2 m$ and therefore has continuous extensions to a bounded operator $\Delta: H^{s}(M, \mathscr{E}) \rightarrow H^{s-2 m}(M, \mathscr{E})$.
6.5. Example. Choosing a scalar product on the fibers $T^{*} M$ (which is equivalent to choosing a riemannian metric on M) we obtain scalar products on all spaces $\Omega^{k}(M), k=0, \ldots, n$. The adjoint to the de Rham differential d is often denoted by δ. We know from the general theory that the symbol of the adjoint is the adjoint of the symbol. Here

$$
\sigma(d): \pi_{0}^{*} \Omega^{k}(M) \rightarrow \pi_{0}^{*} \Omega^{k+1}(M) ; \quad \sigma(d)(x, \xi) \eta=\xi \wedge \eta, \eta \in \pi_{0}^{*} \Omega^{k}(M)
$$

The adjoint map is the interior multiplication map $\operatorname{int}(i \xi)$ with $-i \xi$ (in contrast to the map $\operatorname{ext}(i \xi)=i \xi \wedge$ of exterior multiplication with $i \xi$:

$$
\sigma(\delta)=\sigma(d)^{*}: \pi_{0}^{*} \Omega^{k+1}(M) \rightarrow \pi_{0}^{*} \Omega^{k}(M) .
$$

The scalar product on $T^{*} M$ induces, for every $x \in M$, an isomorphism $j: T_{x}^{*} M \xrightarrow{\cong} T_{x} M$ by

$$
\eta(j(\omega))=\langle\eta, \omega\rangle, \quad \eta, \omega \in T^{*} M .
$$

We then set

$$
\operatorname{int}(-i \xi) \eta=-i \iota_{j(\xi)} \eta, \quad \eta \in \Omega^{k+1}(M)
$$

The symbol of the Laplacian on k-forms then is

$$
\begin{aligned}
& \sigma(\Delta)(x, \xi)=(\sigma(d) \sigma(\delta)+\sigma(\delta) \sigma(d))(x, \xi) \\
& \quad=\operatorname{ext}(i \xi) \operatorname{int}(-i \xi)+\operatorname{int}(-i \xi) \operatorname{ext}(i \xi)=|\xi|^{2} I d_{\Lambda^{k}} .
\end{aligned}
$$

6.6. Lemma. The following are equivalent:
(i) The complex 6.1(1) is elliptic
(ii) $\Delta: C^{\infty}(M, \mathscr{E}) \rightarrow C^{\infty}(M, \mathscr{E})$ is elliptic
(iii) $P+P^{*}: C^{\infty}(M, \mathscr{E}) \rightarrow C^{\infty}(M, \mathscr{E})$ is elliptic.

Proof. Since $\Delta=\left(P+P^{*}\right)^{2}$, conditions (ii) and (iii) are equivalent by Theorem 5.25.

Moreover, Δ is elliptic if and only if all diagonal elements are elliptic. Let us check that this is equivalent to the exactness of the complex

$$
\begin{equation*}
0 \longrightarrow \pi_{0}^{*} E^{0} \xrightarrow{\sigma\left(P^{0}\right)} \pi_{0}^{*} E^{1} \xrightarrow{\sigma\left(P^{1}\right)} \ldots \xrightarrow{\sigma\left(P^{m-1}\right)} \pi_{0}^{*} E^{m} \longrightarrow 0 . \tag{1}
\end{equation*}
$$

Write $p_{j}=\sigma\left(P^{j}\right)$. First assume that (1) is exact. Then in the first place p_{0} is injective, and hence $p_{0}^{*} p_{0}$ invertible.

In the next place, assume that $\operatorname{im} p_{0}=\operatorname{ker} p_{1}$ and show the invertibility of $p_{1}^{*} p_{1}+p_{0} p_{0}^{*}$. It suffices to prove that the kernel is trivial. Suppose $p_{1}^{*} p_{1} x+p_{0} p_{0}^{*} x=0$. Then $\left\langle p_{1}^{*} p_{1} x, x\right\rangle+\left\langle p_{0} p_{0}^{*} x, x\right\rangle=0$ and hence $\left\langle p_{1} x, p_{1} x\right\rangle+\left\langle p_{0}^{*} x, p_{0}^{*} x\right\rangle=0$. We see that $x \in \operatorname{ker} p_{1}=\operatorname{im} p_{0}$, so that $x=p_{0} y$ for some y and $p_{0}^{*} p_{0} y=p_{0}^{*} x=0$. Since $p_{0}^{*} p_{0}$ is invertible, $y=0$ and therefore $x=0$. Iteration shows the invertibility of all $p_{j+1}^{*} p_{j+1}+p_{j} p_{j}^{*}$.

Conversely, suppose that Δ is elliptic. In the first place, the invertibility of $p_{0}^{*} p_{0}$ implies the injectivity of p_{0}. Next suppose $x \in \pi_{0}^{*} E^{1}$ belongs to the kernel of p_{1}. As $p_{1}^{*} p_{1}+p_{0} p_{0}^{*}$ is invertible, we find $y \in \pi_{0}^{*} E^{1}$ such that $x=\left(p_{1}^{*} p_{1}+p_{0} p_{0}^{*}\right) y$. The fact that x is in the kernel of p_{1} together with the fact that $p_{1} p_{0}=0$ implies that $0=p_{1} x=p_{1} p_{1}^{*} p_{1} y$. Hence $p_{1} y \in \operatorname{ker} p_{1} p_{1}^{*}=$ $\operatorname{ker} p_{1}^{*}$. So $p_{1}^{*} p_{1} y=0$ and thus $x=p_{0} p_{0}^{*} y \in \operatorname{im} p_{0}$. We argue analogously for the other places.
6.7. Lemma. Assume that the complex 6.1(1) is elliptic. Then
(a) $\operatorname{ker} \Delta \subseteq C^{\infty}(M, \mathscr{E})$ for all extensions $\Delta: H^{s}(M, \mathscr{E}) \rightarrow H^{s-m}(M, \mathscr{E})$.
(b) $\operatorname{ker} \Delta=\operatorname{ker} P \cap \operatorname{ker} P^{*}$.

Proof. (a) follows from elliptic regularity.
(b) We have $\langle\Delta u, u\rangle=\left\langle\left(P^{*} P+P P^{*}\right) u, u\right\rangle=\langle P u, P u\rangle+\left\langle P^{*} u, P^{*} u\right\rangle$, so that $\operatorname{ker} \Delta \subseteq \operatorname{ker} P \cap \operatorname{ker} P^{*}$. Conversely, if $u \in \operatorname{ker} P \cap \operatorname{ker} P^{*}$, then $\Delta u=\left(P^{*} P+P P^{*}\right) u=0$.
6.8. Theorem: Hodge decomposition. Assume that the complex 6.1(1) is elliptic. Then

$$
\begin{aligned}
C^{\infty}(M, \mathscr{E}) & =\operatorname{ker} \Delta \perp \operatorname{im} P^{*} P_{\mid C^{\infty}(M, \mathscr{E})} \perp \operatorname{im} P P_{\mid C^{\infty}(M, \mathscr{E})}^{*} \\
& =\operatorname{ker} \Delta \perp \operatorname{im} P_{\mid C^{\infty}(M, \mathscr{E})}^{*} \perp \operatorname{im} P_{\mid C^{\infty}(M, \mathscr{E})},
\end{aligned}
$$

where we consider P and P^{*} as maps on $C^{\infty}(M, \mathscr{E})$ and write \perp for the orthogonal direct sum.

Proof. ' \supseteq ' is clear from Lemma 6.7 and the mapping properties.
' \subseteq ': Denote, for the moment, by $\pi_{\mathrm{ker}} \Delta$ the orthogonal projection onto the (finite-dimensional) kernel of Δ in $L^{2}(M, \mathscr{E})$. Given $u \in C^{\infty}(M, \mathscr{E})$ let
$u_{0}=\pi_{\text {ker } \Delta} u$. Then

$$
\begin{array}{rlrl}
u-u_{0} & \in & & (\operatorname{ker} \Delta)^{\perp} \cap C^{\infty}(M, \mathscr{E}) \\
& = & & \overline{\operatorname{im} \Delta^{*} \cap C^{\infty}(M, \mathscr{E})} \\
\stackrel{\Delta=\Delta^{*}}{=} & & \operatorname{im\Delta } \cap C^{\infty}(M, \mathscr{E}) \\
\Delta \text { Fredholm } & \\
& = & & \operatorname{im} \Delta \cap C^{\infty}(M, \mathscr{E}) \\
& = & & \operatorname{im}\left(P^{*} P+P P^{*}\right) \\
\subseteq & & \operatorname{im} P^{*} P+\operatorname{im} P P^{*} \\
\subseteq & & \operatorname{im} P^{*}+\operatorname{im} P .
\end{array}
$$

Moreover, we note that the right hand side is a subset of $(\operatorname{ker} \Delta)^{\perp}$ and that the last sum is orthogonal in view of the fact that for $u, v \in C^{\infty}(M, \mathscr{E})$:

$$
\left\langle P u, P^{*} v\right\rangle=\left\langle P^{2} u, v\right\rangle=0, \text { since } P^{2}=0 \text { (complex!). }
$$

6.9. Hodge Theorem. Assume that the complex 6.1(1) is elliptic and write $\Delta=\operatorname{diag}\left(\Delta_{1}, \ldots, \Delta_{m}\right)$. Then

$$
\operatorname{ker} \Delta_{k} \cong \operatorname{ker} P_{k} / \operatorname{im} P_{k-1}=: H^{k}, \quad k=1, \ldots, m
$$

Note that the quotient makes sense, since the complex property $P_{k} P_{k-1}=0$ guarantees that $\operatorname{im} P_{k-1} \subseteq \operatorname{ker} P_{k}$. Since Δ is a Fredholm operator, the quotient is finite-dimensional.

Proof. We define the map

$$
\operatorname{ker} \Delta \ni u \mapsto[u]=u+\operatorname{im} P_{k-1} \in H^{k}
$$

According to Lemma 6.7 this makes sense.
The map is injective: Suppose $[u]=0$. Then $u \in \operatorname{im} P_{k-1}$, which is orthogonal to ker Δ by Theorem 6.8. Hence $u=0$.

Surjectivity. Suppose that $u \in \operatorname{ker} P_{k}$. Apply P_{k} to the Hodge decomposition

$$
u=u_{0}+P_{k-1} v+P_{k}^{*} w
$$

of u (with $\left.u_{0} \in \operatorname{ker} \Delta, v \in C^{\infty}\left(M, \mathscr{E}_{k-1}\right), w \in C^{\infty}\left(M, \mathscr{E}_{k}\right)\right)$, we see that

$$
0=P_{k} u_{0}+P_{k} P_{k-1} v+P_{k} P_{k}^{*} w=0+0+P_{k} P_{k}^{*} w
$$

since ker $\Delta \subseteq \operatorname{ker} P_{k}$ according to Lemma 6.7(b), and since $P_{k} P_{k-1}=0$. We conclude that $P_{k} P_{k}^{*} w=0$ and therefore $P_{k}^{*} w=0$. Hence $\left[u_{0}\right]=[u]$.
6.10. Definition. Given an elliptic complex $6.1(1)$ we can define the operator

$$
\mathcal{P}=\left(P+P^{*}\right)_{C_{C \infty}\left(M, \mathscr{E}_{\mathrm{even}}\right)}: C^{\infty}\left(M, \mathscr{E}^{\mathrm{even}}\right) \rightarrow C^{\infty}\left(M, \mathscr{E}^{\mathrm{odd}}\right)
$$

Moreover, one defines the index of the complex to be the index of \mathcal{P}. This is consistent with the usual definition by Example 6.3. Denote by p_{k} the
symbol of P_{k}. To see the injectivity of $\sigma(\mathcal{P})$ we note that for $v=\left(v_{0}, v_{2}, \ldots\right)$ the equality $\sigma(\mathcal{P}) v=0$ says that

$$
\begin{aligned}
& p_{0} v_{0}+p_{1}^{*} v_{2}=0 \\
& p_{2} v_{2}+p_{3}^{*} v_{4}=0
\end{aligned}
$$

The first equality implies that $p_{1}^{*} v_{2} \in \operatorname{im} p_{0}=\operatorname{ker} p_{1}$. This shows that $0=\left\langle p_{1} p_{1}^{*} v_{2}, v_{2}\right\rangle=\left\langle p_{1}^{*} v_{2}, p_{1}^{*} v_{2}\right\rangle$; hence $p_{1}^{*} v_{2}=0$, and $v_{0}=0$ in view of the injectivity of p_{0}. The second equality shows that $p_{3}^{*} v_{3} \in \operatorname{im} p_{2}=\operatorname{ker} p_{3}$. As before, $p_{3}^{*} v_{3}=0$. Hence $v_{2} \in \operatorname{ker} p_{2}=\operatorname{im} p_{1}$, say $v_{2}=p_{1} w_{1}$. Then $0=p_{1}^{*} v_{2}=p_{1}^{*} p_{1} w_{1}$. Taking the scalar product with w_{1}, we see that $0=$ $p_{1} w_{1}=v_{2}$. Iteration gives the desired injectivity.

The exactness of the symbol complex implies that the dimensions of the sums of the even and odd spaces agree (!). Hence the symbol of \mathcal{P} is a map between spaces of the same dimension and injectivity implies invertibility.
6.11. Lemma. We use the notation of Definition 6.10.
(a) The adjoint \mathcal{P}^{*} of \mathcal{P} is given by

$$
\mathcal{P}^{*}=\left.\left(P+P^{*}\right)\right|_{C^{\infty}\left(M, \mathscr{E}^{\text {odd }}\right)}: C^{\infty}\left(M, \mathscr{E}^{\text {odd }}\right) \rightarrow C^{\infty}\left(M, \mathscr{E}^{\text {even }}\right)
$$

(b) $\quad \operatorname{ker} \mathcal{P}=\bigoplus_{k} \operatorname{ker}\left(P+P^{*}\right)_{C^{\infty}\left(M, \mathscr{E}^{2 k}\right)}=\bigoplus_{k} \operatorname{ker} \Delta_{2 k}$
(c) $\operatorname{ker} \mathcal{P}^{*}=\left.\bigoplus_{k} \operatorname{ker}\left(P+P^{*}\right)\right|_{C^{\infty}\left(M, \mathscr{E}^{2 k+1}\right)}=\bigoplus_{k} \operatorname{ker} \Delta_{2 k+1}$

Proof. (a) is clear.
(b) The first equality holds by definition. As for the second we see from Example 6.3 that for $v=\left(v_{0}, v_{2}, \ldots\right)$

$$
\left(P+P^{*}\right) v=\left(P_{1}^{*} v_{2}+P_{0} v_{0}, P_{3}^{*} v_{4}+P_{2} v_{2}, \ldots\right)
$$

In view of the fact that im $P_{k}^{*} \perp \operatorname{im} P_{k-1}$ we find that $\left(P+P^{*}\right) v=0$ if and only if

$$
\begin{aligned}
& P_{1}^{*} v_{2}=0=P_{0} v_{0} \\
& P_{3}^{*} v_{4}=0=P_{2} v_{2}
\end{aligned}
$$

This in turn is equivalent to the fact that

$$
v \in \operatorname{ker} P_{2 k} \cap \operatorname{ker} P_{2 k+1}^{*} \stackrel{6.7}{=} \operatorname{ker} \Delta_{2 k}
$$

(c) Similarly.
6.12. Theorem. For an elliptic complex $6.1(1)$ we obtain

$$
\begin{align*}
& \text { ind } \mathcal{P}=\operatorname{dim} \operatorname{ker} \mathcal{P}-\operatorname{dim} \operatorname{ker} \mathcal{P}^{*} \\
& \qquad=\sum_{k=0}^{m}(-1)^{k} \operatorname{dim} \operatorname{ker} \Delta_{k}=\sum_{k=0}^{m}(-1)^{k} \operatorname{dim} H^{k} . \tag{1}
\end{align*}
$$

Proof. The first equality is due to the fact that $\operatorname{ker} \mathcal{P}^{*}=(\operatorname{im} \mathcal{P})^{\perp}$ and that $\operatorname{im} \mathcal{P}$ is closed, since $\operatorname{im} P_{k}=\operatorname{ker} P_{k+1}$. The second equality is a consequence of Lemma 6.3 and the third follows from the Hodge Theorem 6.9.
6.13. Remark. The number on the right hand side of $6.12(1)$ is called the Euler characteristic of the complex. For the deRham complex

$$
0 \rightarrow \Omega^{0} M \xrightarrow{d} \Omega^{1} M \rightarrow \ldots \xrightarrow{d} \Omega^{n} M \rightarrow 0
$$

the spaces $H^{k}(M)$ are called the de Rham cohomology classes and the number $\sum_{k=0}^{m}(-1)^{k} \operatorname{dim} H^{k}(M)$ is called the Euler characteristic of M.
6.14. Example. The theorem of Gauß-Bonnet asserts that for a compact, oriented Riemannian surface M one has

$$
\operatorname{ind} d=\chi(M)=\frac{1}{2 \pi} \int_{M} K d S
$$

where K is the Gauß curvature (the product of the two principal curvatures). This expresses the index of the complex in locally computable terms. The result is true for any metric!

In this 2-dimensional case, the Euler characteristic $\chi(M)$ is related to the genus g of M by the formula

$$
\chi(M)=2-2 g .
$$

6.15. More complexes.

(a) Signature complex. Let M be a compact oriented manifold of dimension $n=4 k$. We can then define a symmetric bilinear form on $H^{2 k}(M)$ by

$$
(\alpha, \beta)=\int_{M} \alpha \wedge \beta \stackrel{\operatorname{dim}=4 k}{=} \int_{M} \beta \wedge \alpha
$$

The signature of the associated quadratic form is called the signature of $M, \operatorname{sign}(M)$.

Moreover, the smooth scalar product on the fibers on $T^{*} M$ (i.e. a Riemannian metric g on M) gives us an L^{2}-scalar product on all $\Omega^{m}(M)$, and we obtain an isomorphism $\star: \Omega^{m}(M) \rightarrow \Omega^{n-m}$ via

$$
\int \star \omega \wedge \eta=\int\langle\omega, \eta\rangle d \mu_{g}, \quad \omega, \eta \in \Omega^{m}(M)
$$

The map \star satisfies $\star \star= \pm I$ with a suitable sign. Letting $\tau: i^{k+m(m-1)} \star$ we obtain an involution ${ }^{13}$ on $\Omega^{\bullet}(M)=\bigoplus \Omega^{m}(M)$, so that $\Omega^{\bullet}(M)=$ $\Omega^{+}(M) \oplus \Omega^{-}(M)$, where $\Omega^{ \pm}(M)$ are the ± 1-eigenspaces for τ.

Since $d+\delta$ anti-commutes with τ, we may consider the operator $d+\delta: \Omega^{+}(M) \rightarrow \Omega^{-}(M)$. It turns out that

$$
\operatorname{ind}(d+\delta)=\operatorname{sign} M
$$

Hirzebruch's signature theorem (1953) expresses the signature as an integral:

$$
\operatorname{sign}(M)=(\pi i)^{-2 k} \int_{M} L(M)
$$

Here $L(M)$ is the L-genus of M, a $4 k$-form made up from the Pontryagin classes of the tangent bundle (to be explained later).

[^0](b) Dolbeault complex. On a complex manifold M we have the $\bar{\partial}$ operator,
$$
\bar{\partial}: \Omega^{p, q}(M) \rightarrow \Omega^{p, q+1}(M)
$$

The cohomology of the complex

$$
0 \rightarrow \Omega^{0,0}(M) \xrightarrow{\bar{o}} \Omega^{0,1}(M) \xrightarrow{\bar{o}} \ldots \rightarrow 0
$$

is called the Dolbeault cohomology of M. Here

$$
\operatorname{ind}\left(\bar{\partial}+\bar{\partial}^{*}\right)=\sum(-1)^{p} \operatorname{dim}_{\mathbb{C}} H^{p}(M)
$$

the so-called holomorphic Euler characteristic of M.
The setting generalizes to the case of a complex vector bundle E over M.

The Hirzebruch-Riemann-Roch theorem [10] of 1954 expresses the Euler characteristic $\chi(M, E)$ by an integral involving the Chern class of E and the Todd class of the tangent bundle of M. More on this in the next section.

[^0]: ${ }^{13}$ An involution is a map ι with $\iota^{2}=I$. In particular, its eigenvalues are ± 1.

