
35

6. Elliptic Complexes

6.1. Definition. Let E0, E1, . . ., be vector bundles over M . A complex of
pseudodifferential operators is a finite sequence

0 ! C1
(M,E0

)
P

0

�! C1
(M,E1

)
P

1

�! . . .
P

m�1

�! C1
(M,Em

) ! 0(1)

of pseudodifferential operators P j such that P j+1P j
= 0, i.e. imP j

✓

kerP j+1.
It will make the considerations in 6.4, below, easier, if we assume that all

P j have the same order, say m. In practically appearing cases, we mostly
have m = 1; otherwise it can easily be achieved with the help of order
reducing operators.

The complex is called elliptic, if the associated complex of symbol maps

0 ! ⇡⇤E0 �(P 0)
�! ⇡⇤E1 �(P 1)

�! . . .
�(Pm�1)
�! ⇡⇤Em

! 0(2)

over T ⇤M \ 0 is exact, i.e. im�(P j
) = ker�(P j+1

). Here ⇡ : T ⇤M \ 0 ! M
is the map to the base point.

In the sequel, we will also assume that the vector bundles have a hermitian
structure, i.e. there is a scalar product on every fiber, varying smoothly with
the base point.

6.2. Example. Let ⇤
k
= ⇤

kT ⇤M be the bundle of k-forms over M . As
usual, we write ⌦

kM = C1
(M,⇤k

) Consider the de Rham complex

0 ! ⌦
0M

d
�! ⌦

1M
d

�! . . .
d

�! ⌦
nM ! 0,

where n = dimM . The associated symbol complex is

0 ! ⇡⇤
⇤
0 i⇠^
�! ⇡⇤

⇤
1 i⇠^
�! . . .

I⇠^
�! ⇡⇤

⇤
n
! 0,

cf. Example 5.31. As ⇠ ^ ⇠ = 0 for every ⇠ 2 T ⇤M \ 0, we have im�(dj) ✓
ker�(dj+1

). In order to see the reverse inclusion assume that ⇠ ^ ⌘ = 0

for a form ⌘ =
P

fIdxI where the sum is over all I = (i1, . . . , ik) with
1  i1 < . . . < ik  n. By a linear change of coordinates we may assume
that ⇠ = dx1. The fact that ⇠^⌘ = 0 means that i1 = 1 for all I with fI 6= 0.
Hence ⌘ 2 im(dx1^).

6.3. Example. Every elliptic pseudodifferential operator P : C1
(M,E1

) !

C1
(M,E2

) defines an elliptic complex

0 ! C1
(M,E1

) ! C1
(M,E2

) ! 0.

In fact,

0 ! ⇡⇤E1 �(P )
�! ⇡⇤E2

! 0

is exact, since �(P )(x, ⇠) is invertible.

6.4. From Complexes to operators. To every complex we can associate
operators in a canonical way: Write

E =

M

j

Ej ,E even
=

M

j

E2j ,E odd
=

M

j

E2j+1
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and define the (m+ 1)⇥ (m+ 1) operator matrices

P =

0

BBBBB@

0 0 . . . 0 0

P 0
0 . . . 0 0

0 P 1 . . . 0 0

...
... . . . ...

...
0 0 . . . Pm�1

0

1

CCCCCA
, P ⇤

=

0

BBBBB@

0 P 0⇤
0 . . . 0 0

0 0 P 1⇤ . . . 0 0

...
...

... . . . ...
...

0 0 0 . . . 0 Pm�1⇤

0 0 0 . . . 0 0

1

CCCCCA
,

where P j⇤
: C1

(M,Ej+1
) ! C1

(M,Ej
) is the formal adjoint to P j . The

identity P j+1P j implies that P 2
= 0 = (P ⇤

)
2. Then define

� = (P + P ⇤
)
2
= P ⇤P + PP ⇤.

A short computation shows that

� =

0

BBBBB@

P 0⇤P 0
0 . . . 0 0

0 P 1⇤P 1
+ P 0P 0⇤ . . . 0 0

...
... . . . ...

...
0 0 . . . Pm�1⇤Pm�1

+ Pm�2Pm�2⇤
0

0 0 . . . 0 Pm�1Pm�1⇤

1

CCCCCA

� is called the Hodge-Laplace operator, in particular, if the Pj are the ex-
terior derivatives on forms.

Assuming - as we do - that all P j are of order m, we see that � is a pseu-
dodifferentialoperator of order 2m and therefore has continuous extensions
to a bounded operator � : Hs

(M,E ) ! Hs�2m
(M,E ).

6.5. Example. Choosing a scalar product on the fibers T ⇤M (which is
equivalent to choosing a riemannian metric on M) we obtain scalar products
on all spaces ⌦

k
(M), k = 0, . . . , n. The adjoint to the de Rham differential

d is often denoted by �. We know from the general theory that the symbol
of the adjoint is the adjoint of the symbol. Here

�(d) : ⇡⇤
0⌦

k
(M) ! ⇡⇤

0⌦
k+1

(M); �(d)(x, ⇠)⌘ = ⇠ ^ ⌘, ⌘ 2 ⇡⇤
0⌦

k
(M).

The adjoint map is the interior multiplication map int(i⇠) with �i⇠ (in con-
trast to the map ext(i⇠) = i⇠^ of exterior multiplication with i⇠:

�(�) = �(d)⇤ : ⇡⇤
0⌦

k+1
(M) ! ⇡⇤

0⌦
k
(M).

The scalar product on T ⇤M induces, for every x 2 M , an isomorphism
j : T ⇤

xM
⇠=
! TxM by

⌘(j(!)) = h⌘,!i, ⌘,! 2 T ⇤M.

We then set
int(�i⇠)⌘ = �i◆j(⇠)⌘, ⌘ 2 ⌦

k+1
(M).

The symbol of the Laplacian on k-forms then is
�(�)(x, ⇠) = (�(d)�(�) + �(�)�(d))(x, ⇠)

= ext(i⇠) int(�i⇠) + int(�i⇠) ext(i⇠) = |⇠|2Id⇤k .

6.6. Lemma. The following are equivalent:
(i) The complex 6.1(1) is elliptic
(ii) � : C1

(M,E ) ! C1
(M,E ) is elliptic

(iii) P + P ⇤
: C1

(M,E ) ! C1
(M,E ) is elliptic.
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Proof. Since � = (P + P ⇤
)
2, conditions (ii) and (iii) are equivalent by The-

orem 5.25.
Moreover, � is elliptic if and only if all diagonal elements are elliptic. Let

us check that this is equivalent to the exactness of the complex

0 �! ⇡⇤
0E

0 �(P 0)
�! ⇡⇤

0E
1 �(P 1)
�! . . .

�(Pm�1)
�! ⇡⇤

0E
m

�! 0.(1)

Write pj = �(P j
). First assume that (1) is exact. Then in the first place p0

is injective, and hence p⇤0p0 invertible.
In the next place, assume that im p0 = ker p1 and show the invertibil-

ity of p⇤1p1 + p0p⇤0. It suffices to prove that the kernel is trivial. Sup-
pose p⇤1p1x + p0p⇤0x = 0. Then hp⇤1p1x, xi + hp0p⇤0x, xi = 0 and hence
hp1x, p1xi+ hp⇤0x, p

⇤
0xi = 0. We see that x 2 ker p1 = im p0, so that x = p0y

for some y and p⇤0p0y = p⇤0x = 0. Since p⇤0p0 is invertible, y = 0 and therefore
x = 0. Iteration shows the invertibility of all p⇤

j+1pj+1 + pjp⇤j .
Conversely, suppose that � is elliptic. In the first place, the invertibility

of p⇤0p0 implies the injectivity of p0. Next suppose x 2 ⇡⇤
0E

1 belongs to
the kernel of p1. As p⇤1p1 + p0p⇤0 is invertible, we find y 2 ⇡⇤

0E
1 such that

x = (p⇤1p1 + p0p⇤0)y. The fact that x is in the kernel of p1 together with the
fact that p1p0 = 0 implies that 0 = p1x = p1p⇤1p1y. Hence p1y 2 ker p1p⇤1 =

ker p⇤1. So p⇤1p1y = 0 and thus x = p0p⇤0y 2 im p0. We argue analogously for
the other places. ⇤

6.7. Lemma. Assume that the complex 6.1(1) is elliptic. Then

(a) ker� ✓ C1
(M,E ) for all extensions � : Hs

(M,E ) ! Hs�m
(M,E ).

(b) ker� = kerP \ kerP ⇤.

Proof. (a) follows from elliptic regularity.
(b) We have h�u, ui = h(P ⇤P + PP ⇤

)u, ui = hPu, Pui + hP ⇤u, P ⇤ui,
so that ker� ✓ kerP \ kerP ⇤. Conversely, if u 2 kerP \ kerP ⇤, then
�u = (P ⇤P + PP ⇤

)u = 0. ⇤

6.8. Theorem: Hodge decomposition. Assume that the complex 6.1(1)
is elliptic. Then

C1
(M,E ) = ker� ? imP ⇤P|C1(M,E ) ? imPP ⇤

|C1(M,E )

= ker� ? imP ⇤
|C1(M,E ) ? imP|C1(M,E ),

where we consider P and P ⇤ as maps on C1
(M,E ) and write ? for the

orthogonal direct sum.

Proof. ‘◆’ is clear from Lemma 6.7 and the mapping properties.
‘✓’: Denote, for the moment, by ⇡ker� the orthogonal projection onto

the (finite-dimensional) kernel of � in L2
(M,E ). Given u 2 C1

(M,E ) let
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u0 = ⇡ker�u. Then

u� u0 2 (ker�)
?
\ C1

(M,E )

= im�⇤ \ C1
(M,E )

�=�⇤
= im� \ C1

(M,E )

�Fredholm
= im� \ C1

(M,E )

= im�|C1(M,E )

= im(P ⇤P + PP ⇤
)

✓ imP ⇤P + imPP ⇤

✓ imP ⇤
+ imP.

Moreover, we note that the right hand side is a subset of (ker�)
? and that

the last sum is orthogonal in view of the fact that for u, v 2 C1
(M,E ):

hPu, P ⇤vi = hP 2u, vi = 0, since P 2
= 0 (complex!).

⇤

6.9. Hodge Theorem. Assume that the complex 6.1(1) is elliptic and
write � = diag (�1, . . . ,�m). Then

ker�k
⇠= kerPk/ imPk�1 =: Hk, k = 1, . . . ,m.

Note that the quotient makes sense, since the complex property PkPk�1 = 0

guarantees that imPk�1 ✓ kerPk. Since � is a Fredholm operator, the
quotient is finite-dimensional.

Proof. We define the map

ker� 3 u 7! [u] = u+ imPk�1 2 Hk

According to Lemma 6.7 this makes sense.
The map is injective: Suppose [u] = 0. Then u 2 imPk�1, which is

orthogonal to ker� by Theorem 6.8. Hence u = 0.
Surjectivity. Suppose that u 2 kerPk. Apply Pk to the Hodge decompo-

sition
u = u0 + Pk�1v + P ⇤

k
w

of u (with u0 2 ker�, v 2 C1
(M,Ek�1), w 2 C1

(M,Ek)), we see that

0 = Pku0 + PkPk�1v + PkP
⇤
k
w = 0 + 0 + PkP

⇤
k
w

since ker� ✓ kerPk according to Lemma 6.7(b), and since PkPk�1 = 0. We
conclude that PkP ⇤

k
w = 0 and therefore P ⇤

k
w = 0. Hence [u0] = [u]. ⇤

6.10. Definition. Given an elliptic complex 6.1(1) we can define the oper-
ator

P = (P + P ⇤
)|C1(M,Eeven)

: C1
(M,E even

) ! C1
(M,E odd

).

Moreover, one defines the index of the complex to be the index of P. This
is consistent with the usual definition by Example 6.3. Denote by pk the
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symbol of Pk. To see the injectivity of �(P) we note that for v = (v0, v2, . . .)
the equality �(P)v = 0 says that

p0v0 + p⇤1v2 = 0

p2v2 + p⇤3v4 = 0

...

The first equality implies that p⇤1v2 2 im p0 = ker p1. This shows that
0 = hp1p⇤1v2, v2i = hp⇤1v2, p

⇤
1v2i; hence p⇤1v2 = 0, and v0 = 0 in view of the

injectivity of p0. The second equality shows that p⇤3v3 2 im p2 = ker p3.
As before, p⇤3v3 = 0. Hence v2 2 ker p2 = im p1, say v2 = p1w1. Then
0 = p⇤1v2 = p⇤1p1w1. Taking the scalar product with w1, we see that 0 =

p1w1 = v2. Iteration gives the desired injectivity.
The exactness of the symbol complex implies that the dimensions of the

sums of the even and odd spaces agree (!). Hence the symbol of P is a map
between spaces of the same dimension and injectivity implies invertibility.

6.11. Lemma. We use the notation of Definition 6.10.
(a) The adjoint P

⇤ of P is given by

P
⇤
= (P + P ⇤

)|C1(M,Eodd)
: C1

(M,E odd
) ! C1

(M,E even
).

(b) kerP =
L

k
ker(P + P ⇤

)|C1(M,E2k)
=

L
k
ker�2k

(c) kerP
⇤
=

L
k
ker(P + P ⇤

)|C1(M,E2k+1)
=

L
k
ker�2k+1

Proof. (a) is clear.
(b) The first equality holds by definition. As for the second we see from

Example 6.3 that for v = (v0, v2, . . .)

(P + P ⇤
)v = (P ⇤

1 v2 + P0v0, P
⇤
3 v4 + P2v2, . . .).

In view of the fact that imP ⇤
k
? imPk�1 we find that (P + P ⇤

)v = 0 if and
only if

P ⇤
1 v2 = 0 = P0v0,

P ⇤
3 v4 = 0 = P2v2,

. . .

This in turn is equivalent to the fact that

v 2 kerP2k \ kerP ⇤
2k+1

6.7
= ker�2k.

(c) Similarly. ⇤
6.12. Theorem. For an elliptic complex 6.1(1) we obtain

indP = dimkerP � dimkerP
⇤

=

mX

k=0

(�1)
k
dimker�k =

mX

k=0

(�1)
k
dimHk.(1)

Proof. The first equality is due to the fact that kerP
⇤
= (imP)

? and that
imP is closed, since imPk = kerPk+1. The second equality is a consequence
of Lemma 6.3 and the third follows from the Hodge Theorem 6.9. ⇤



40

6.13. Remark. The number on the right hand side of 6.12(1) is called the
Euler characteristic of the complex. For the deRham complex

0 ! ⌦
0M

d
! ⌦

1M ! . . .
d
! ⌦

nM ! 0

the spaces Hk
(M) are called the de Rham cohomology classes and the num-

ber
P

m

k=0(�1)
k
dimHk

(M) is called the Euler characteristic of M .

6.14. Example. The theorem of Gauß-Bonnet asserts that for a compact,
oriented Riemannian surface M one has

ind d = �(M) =
1

2⇡

Z

M

KdS,

where K is the Gauß curvature (the product of the two principal curvatures).
This expresses the index of the complex in locally computable terms. The
result is true for any metric!

In this 2-dimensional case, the Euler characteristic �(M) is related to the
genus g of M by the formula

�(M) = 2� 2g.

6.15. More complexes.
(a) Signature complex. Let M be a compact oriented manifold of di-

mension n = 4k. We can then define a symmetric bilinear form on
H2k

(M) by

(↵,�) =

Z

M

↵ ^ �
dim=4k
=

Z

M

� ^ ↵.

The signature of the associated quadratic form is called the signature

of M , sign(M).
Moreover, the smooth scalar product on the fibers on T ⇤M (i.e.

a Riemannian metric g on M) gives us an L2-scalar product on all
⌦
m
(M), and we obtain an isomorphism ? : ⌦

m
(M) ! ⌦

n�m via
Z

?! ^ ⌘ =

Z
h!, ⌘i dµg, !, ⌘ 2 ⌦

m
(M).

The map ? satisfies ?? = ±I with a suitable sign. Letting ⌧ : ik+m(m�1)?
we obtain an involution13 on ⌦

•
(M) =

L
⌦
m
(M), so that ⌦

•
(M) =

⌦
+
(M)� ⌦

�
(M), where ⌦

±
(M) are the ±1-eigenspaces for ⌧ .

Since d + � anti-commutes with ⌧ , we may consider the operator
d+ � : ⌦

+
(M) ! ⌦

�
(M). It turns out that
ind(d+ �) = signM.

Hirzebruch’s signature theorem (1953) expresses the signature as an
integral:

sign(M) = (⇡i)�2k
Z

M

L(M)

Here L(M) is the L-genus of M , a 4k-form made up from the Pon-
tryagin classes of the tangent bundle (to be explained later).

13
An involution is a map ◆ with ◆

2 = I. In particular, its eigenvalues are ±1.
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(b) Dolbeault complex. On a complex manifold M we have the @̄-
operator,

@̄ : ⌦
p,q

(M) ! ⌦
p,q+1

(M).

The cohomology of the complex

0 ! ⌦
0,0

(M)
@̄
! ⌦

0,1
(M)

@̄
! . . . ! 0

is called the Dolbeault cohomology of M . Here

ind(@̄ + @̄⇤
) =

X
(�1)

p
dimCHp

(M),

the so-called holomorphic Euler characteristic of M .
The setting generalizes to the case of a complex vector bundle E

over M .
The Hirzebruch-Riemann-Roch theorem [10] of 1954 expresses the

Euler characteristic �(M,E) by an integral involving the Chern class
of E and the Todd class of the tangent bundle of M . More on this in
the next section.


