3. Toeplitz Operators

3.1. Banach algebras and C^{*}-algebras. A Banach algebra is a complex Banach space \mathscr{B} which is also an algebra with respect to a multiplication that additionally satisfies

$$
\|a b\| \leq\|a\|\|b\|, \quad a, b \in \mathscr{B} .
$$

It is called a C^{*}-algebra if \mathscr{B} also carries an involution $*$ satisfying

$$
(a+b)^{*}=a^{*}+b^{*},(c a)^{*}=\bar{c} a^{*},(a b)^{*}=b^{*} a^{*}, \text { and }\left\|a^{*} a\right\|=\|a\|^{2}
$$

for $a, b \in \mathscr{B}, c \in \mathbb{C}$. The C^{*}-algebra \mathscr{B} is unital if it contains a unit 1 such that $a 1=1 a=a$ for all $a \in \mathscr{B}$.

Clearly, every closed symmetric subalgebra of $\mathcal{L}(H)$, where H is a complex Hilbert space, is a C^{*}-algebra. The $*$ here is the usual adjoint.

We see immediately that $\mathcal{L}(H)$ (unital), $\mathcal{K}(H)$ (non-unital, if $\operatorname{dim} H=\infty$) and the Calkin algebra $\mathcal{L}(H) / \mathcal{K}(H)$ are C^{*}-algebras. The Calkin algebra carries the involution $[A]^{*}=\left[A^{*}\right]$.

Another example is the algebra $C(X)$ of all continuous functions on a compact Hausdorff space X. The involution here is complex conjugation: $f^{*}(x)=\overline{f(x)}=\bar{f}(x)$.
3.2. Theorem. Let \mathscr{A} and \mathscr{B} be C^{*}-algebras and let $\phi: \mathscr{A} \rightarrow \mathscr{B}$ be a C^{*}-algebra morphism. Then $\|\phi\| \leq 1$.

If \mathscr{A} and \mathscr{B} are unital and ϕ is injective with $\phi\left(1_{\mathscr{A}}\right)=1_{\mathscr{B}}$, then ϕ even is an isometry, i.e. $\|\phi(a)\|=\|a\|$ for all $a \in \mathscr{A}$.
3.3. The Hardy Space. We denote by $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$ the unit circle in \mathbb{C}. Each function $u \in L^{2}(\mathbb{T})$ has a Fourier series $u(\cdot)=\sum_{k \in \mathbb{Z}} a_{k} e^{i k}$. The map $u \mapsto\left(a_{k}\right)_{k \in \mathbb{Z}}$ is an isomorphism $L^{2}(\mathbb{T}) \rightarrow l^{2}(\mathbb{Z})$.

On $\mathbb{T}, z=e^{i t}$, so that $e^{i k t}=z^{k}, k \in \mathbb{Z}$, and we can write the Fourier series also in the form

$$
u=\sum_{k \in \mathbb{Z}} a_{k} z^{k}
$$

By $P: L^{2}(\mathbb{T}) \rightarrow L^{2}(\mathbb{T})$ we denote the orthogonal projection ${ }^{4}$

$$
\begin{equation*}
u=\sum_{k \in \mathbb{Z}} a_{k} z^{k} \mapsto P u=\sum_{k \geq 0} a_{k} z^{k} . \tag{1}
\end{equation*}
$$

Orthogonality follows from the fact that for $u=\sum a_{k} z^{k}, v=\sum b_{k} z^{k}$ in L^{2} we have $\langle u, v\rangle=\sum_{k \in \mathbb{Z}} a_{k} b_{k}$, so that

$$
\langle P u, v\rangle=\sum_{k \geq 0} a_{k} b_{k}=\langle u, P v\rangle
$$

Then

$$
\mathcal{H}^{2}=\mathcal{H}^{2}(\mathbb{T})=\left\{u \in L^{2}(\mathbb{T}): u=\sum_{k \geq 0} a_{k} z^{k}\right\}=\operatorname{im} P=\operatorname{ker}(I-P)
$$

is a closed subspace of $L^{2}(\mathbb{T})$, the Hardy space on \mathbb{T}.
From (1) we see immediately that $\mathcal{H}^{2}(\mathbb{T})$ consists of all $u \in L^{2}(\mathbb{T})$ which have a holomorphic extension to $\{z \in \mathbb{C}:|z|<1\}$.

[^0]Similarly, we can define the spaces $\mathcal{H}^{p}(\mathbb{T}), 1 \leq p \leq \infty$, consisting of those $u \in L^{p}(\mathbb{T})$, for which $u=\sum_{k \geq 0} a_{k} z^{k}$. We note that for $f \in \mathcal{H}^{\infty}$ we have $f u \in \mathcal{H}^{2}$ all $\mathcal{H}^{2}:$ In fact, the product is in $L^{2}(\mathbb{T})$, since $f \in L^{\infty}$, and it has no negative Fourier coefficients by multiplying the Fourier series.
3.4. Toeplitz operators. Let $f \in L^{\infty}(\mathbb{T})$. Then we can define the Toeplitz operator T_{f} associated with f by

$$
T_{f}: L^{2}(\mathbb{T}) \rightarrow L^{2}(\mathbb{T}), u \mapsto P M_{f} P u,
$$

where M_{f} is the operator of multiplication by f It has the following properties
(a) The map $f \mapsto T_{f}$ is linear and continuous from L^{∞} to $\mathcal{L}\left(L^{2}(\mathbb{T})\right)$.
(b) $T_{f}^{*}=T_{\bar{f}}$
(c) $T_{f g}=T_{f} T_{g}$ for $f, g \in \mathcal{H}^{\infty}$
(d) We may also consider T_{f} as an operator on $\mathcal{H}^{2}(\mathbb{T})$; the above properties continue to hold.

Proof. (a) The map is clearly linear. Continuity follows from the fact that

$$
\|P(f P u)\|_{2} \leq\|f P u\|_{2} \leq\|f\|_{\infty}\|P u\|_{2} \leq\|f\|_{\infty}\|u\|_{2},
$$

where we have used that an orthogonal projection has norm ≤ 1.
(b) $\langle P f P u, v\rangle=\langle u, P \bar{f} P v\rangle$.
(c) In view of the fact that M_{g} maps \mathcal{H}^{2} to \mathcal{H}^{2}, we have $T_{f g} u=P(f g P u)=$ $P f P g P u \stackrel{P^{2}=P}{=} P f P P g P u=T_{f} T_{g} u$.
3.5. Lemma. Let $f \in C(\mathbb{T})$. Then $(I-P) M_{f} P \in \mathcal{K}\left(L^{2}(\mathbb{T})\right)$.

Proof. By Weierstraß's theorem, each function in $C(\mathbb{T})$ can be approximated uniformly by trigonometric polynomials ${ }^{5}$. Hence there exists a sequence $\left(f_{n}\right)$ of trigonometric polynomials with $f_{n} \rightarrow f$ in $L^{\infty}(\mathbb{T})$. Then

$$
\left\|(I-P) M_{f} P-(I-P) M_{f_{n}} P\right\|=\left\|(I-P) M_{f-f_{n}} P\right\| \leq\left\|f-f_{n}\right\|_{\infty} \rightarrow 0
$$

Since the compact operators form a closed subset of the bounded operators, it suffices to prove the assertion for each f_{n}. By linearity, we may even restrict ourselves to the case where $f(z)=z^{m}$ for some $m \in \mathbb{Z}$. But then, for $u=\sum a_{k} z^{k}$, we have

$$
(I-P) M_{f} P u=(I-P) \sum_{k \geq 0} a_{k} z^{k+m}=\sum_{k \geq 0, m+k<0} a_{k} z^{k} .
$$

Hence $(I-P) M_{f} P$ is a finite rank operator and therefore compact.
3.6. Theorem. Let $f, g \in C(\mathbb{T})$. Then
(a) $T_{f} T_{g}-T_{f g}$ is a compact operator on \mathcal{H}^{2}
(b) $T_{f} \in \mathcal{K}\left(\mathcal{H}^{2}\right)$ if and only if $f=0$.

Proof. (a) $P M_{f} P M_{g} P=P M_{f} M_{g}-P M_{f}(I-P) M_{g} P=P M_{f g} P+K$, where K is compact by Lemma 3.5.

[^1](b) Since $(I-P) M_{f} P$ is compact, we see that $P M_{f} P$ is compact if and only if $M_{f} P$ is compact. On \mathcal{H}^{2}, however, $M_{f} P=M_{f}$, and a multiplication operator M_{f} is compact if and only if $f=0 .{ }^{6}$
3.7. The Toeplitz algebra. We define the Toeplitz algebra \mathscr{T} as the smallest closed subalgebra of $\mathcal{L}\left(\mathcal{H}^{2}\right)$ which contains all operators $T_{f}, f \in$ $C(\mathbb{T})$. Since $T_{f}^{*}=T_{\bar{f}}$, this subalgebra is automatically closed under taking adjoints. Hence \mathscr{T} is a C^{*}-algebra. Actually, the Toeplitz algebra is one of the most important examples of a C^{*}-algebra.

We have
(a) $\mathcal{K}\left(\mathcal{H}^{2}\right) \subseteq \mathscr{T}$.
(b) $\mathcal{K}\left(\mathcal{H}^{2}\right)$ is the closure of the ideal generated by all commutators $\left[T_{f}, T_{g}\right]$, $f, g \in C(\mathbb{T})$.
(c) $\mathscr{T} / \mathcal{K}\left(\mathcal{H}^{2}\right)$ is a C^{*}-algebra isomorphic to $C(\mathbb{T})$ via the C^{*}-algebra isomorphism $\phi: f \mapsto\left[T_{f}\right]$.
(d) Every element of \mathscr{T} can be written (uniquely) in the form $T_{f}+K$ for some $f \in C(\mathbb{T})$ and $K \in \mathcal{K}\left(\mathcal{H}^{2}\right)$.

Proof. (a) It is sufficient to show that \mathscr{T} contains all finite rank operators. Those are of the form

$$
u \mapsto\left\langle u, z^{m}\right\rangle z^{n} \text { for suitable } m, n \in \mathbb{N}_{0}
$$

i.e. the maps $u=\sum c_{k} z^{k} \mapsto c_{m} z^{n}=\left(c_{m} z^{m}\right) T_{z^{n-m}}$. For $m \in \mathbb{N}$

$$
\left(T_{1}-T_{z^{m}} T_{z^{-m}}\right) u=\sum_{k \geq 0} c_{k} z^{k}-T_{z^{m}} \sum_{k \geq m} c_{k} z^{k-m}=\sum_{k=0}^{m-1} c_{k} z^{k}
$$

Using the above construction for $m+1$ and m, and taking the difference, we see that \mathscr{T} contains all projections $\sum c_{k} z^{k} \mapsto c_{m} z^{m}, m \geq 0$. So I \mathscr{T} contains the finite rank operators and therefore $\mathcal{K}\left(\mathcal{H}^{2}\right)$.
(b) Let us denote for the moment by \mathcal{C} the closed ideal generated by all commutators. Every commutator is a compact operator by Theorem 3.6(a), so $\mathcal{C} \subseteq \mathcal{K}\left(\mathcal{H}^{2}\right)$. By Theorem 3.6(a) and the computation above,

$$
T_{z^{-m}} T_{z^{m}}-T_{z^{m}} T_{z^{-m}}=T_{1}-T_{z^{m}} T_{z^{-m}} \in \mathcal{C} \cap \mathcal{K}\left(\mathcal{H}^{2}\right)
$$

for $m \in \mathbb{N}$. As we saw, these operators generate all finite rank operators. Hence $\mathcal{C}=\mathcal{K}\left(\mathcal{H}^{2}\right)$.
(c) $\mathscr{T} / \mathcal{K}\left(\mathcal{H}^{2}\right)$ carries the quotient norm and the involution $*$ defined by $[T]^{*}=\left[T^{*}\right]$ inherited from $\mathcal{L}\left(\mathcal{H}^{2}\right)$. In particular, it is $*$-invariant and a C^{*} algebra. As we know, $C(\mathbb{T})$ also is a C^{*}-algebra. Let us check that the map $\phi: f \mapsto\left[T_{f}\right]$ is a C^{*}-algebra morphism:

$$
\begin{align*}
& \phi(f)+c \phi(g)=\left[T_{f}\right]+c\left[T_{g}\right]=\left[T_{f}+c T_{g}\right]=\left[T_{f+c g}\right]=\phi(f+c g) \tag{i}\\
& f, g \in C(\mathbb{T}), c \in \mathbb{C}
\end{align*}
$$

$$
\begin{equation*}
\phi(f)^{*}=\left[T_{f}\right]^{*}=\left[\left(T_{f}\right)^{*}\right] \stackrel{3.5}{=}\left[T_{\bar{f}}\right]=\phi(\bar{f}) \tag{ii}
\end{equation*}
$$

[^2](iii) $\phi(f) \phi(g)=\left[T_{f}\right]\left[T_{g}\right] \stackrel{3.6(\mathrm{a})}{=}\left[T_{f g}\right]=\phi(f g)$.

Moreover, we know from Theorem 3.6(b) that ϕ is injective. We will next show that it is also surjective. By definition, the operators of the form T_{f} generate \mathscr{T}. Since $T_{f} T_{g}-T_{f g}$ is compact for all f, g, the elements of the form $\left[T_{f}\right], f \in C(\mathbb{T})$, form a dense set in $\mathscr{T} / \mathcal{K}\left(\mathcal{H}^{2}\right)$. According to Theorem $3.2, \phi$ is an isometry. Hence the image of ϕ is closed. Since it is also dense, it is all of $\mathscr{T} / \mathcal{K}\left(\mathcal{H}^{2}\right)$.
(d) This is an immediate consequence of the fact that ϕ is surjective.
3.8. Theorem. An operator T_{f} is a Fredholm operator in $\mathcal{L}\left(\mathcal{H}^{2}\right)$ if and only if $f(z) \neq 0$ for all $z \in \mathbb{T}$. In this case, the index is given by

$$
\operatorname{ind} T_{f}=-w i n d f
$$

where wind f is the winding number of f around the origin.
Before going into the proof, we recall that for a piecewise smooth function f the winding number is given by

$$
\operatorname{wind} f=\frac{1}{2 \pi i} \int_{f} \frac{1}{z} d z=\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{f^{\prime}\left(e^{i t}\right) e^{i t}}{f\left(e^{i t}\right)} d t
$$

If f is merely continuous, we use the following lemma.
3.9. Lemma. Given a continuous map $f: \mathbb{T} \rightarrow \mathbb{C} \backslash\{0\}$ there exists a unique $n \in \mathbb{Z}$ and a function $\psi \in C(\mathbb{T})$, such that $f(z)=z^{n} e^{\psi(z)}$. The number n is the winding number of f.

Proof. Suppose first that $|f(z)-1|<1$. Then we can write $f=e^{\psi}$ for $\psi=$ $\ln f$. Suppose next that we have f_{1} and f_{2} with $\left|f_{2}(z)-f_{1}(z)\right|<\left\|f_{1}^{-1}\right\|_{\infty}^{-1}$. Then $\left|f_{2}(z) / f_{1}(z)-1\right|<1$ and, as above, we can write $f_{2} / f_{1}=e^{\psi}$ or, equivalently $f_{2}=f_{1} e^{\psi}$. Hence, if the assertion holds for f_{1}, then also for f_{2}. We know that we can approximate every continuous function uniformly by a trigonometric polynomial. So we can replace f by a function of the form $\sum_{k=-N}^{N} a_{k} z^{k}$. Since we can write the latter in the form $z^{-N} \sum_{k=-N}^{N} a_{k} z^{k+N}$, we may even assume that $f=\sum_{k=0}^{M} b_{k} z^{k}$ for suitable b_{k}. This is a polynomial in z which can be written as a product

$$
\sum_{k=0}^{M} b_{k} z^{k}=c \prod_{k=1}^{M}\left(z-\lambda_{k}\right)
$$

and it is clearly sufficient to show the assertion for each term. So let $f(z)=$ $z-\lambda_{k}$. Since f has no zero on \mathbb{T}, we have $\left|\lambda_{k}\right| \neq 1$. For $\left|\lambda_{k}\right|<1$ we have

$$
|f(z)-z|=\left|\lambda_{k}\right|<1=\left\|z^{-1}\right\|_{\infty}^{-1}
$$

and hence $f(z)=z e^{\psi}$ for some ψ. For $\left|\lambda_{k}\right|>1$ we have

$$
\left\|\left(1-\lambda_{k}^{-1} z\right)-1\right\|_{\infty}<1
$$

and hence $1-\lambda_{k}^{-1} z=e^{\psi}$ or $f=z-\lambda_{k}=\lambda_{k} e^{\psi}=e^{\tilde{\psi}}$ for suitable $\tilde{\psi}$. Summing up, we obtain the desired representation of the original f in the form $f=z^{n} e^{\psi}$.

Suppose we could write $f=z^{n} e^{\psi}=z^{m} e^{\phi}$ for $m, n \in \mathbb{Z}$ and $\phi, \psi \in C(\mathbb{T})$. Then $z^{m-n}=e^{\psi-\phi}$. This, however requires that $m=n$, since the function
$e^{\phi-\psi}$ can be connected by a homotopy through invertible functions to the constant function 1 (e.g. take $g_{s}=e^{s(\phi-\psi)}, 0 \leq s \leq 1$), while this is not possible for $z^{k}, k \neq 0$, since these functions have winding number k.

We can now prove Theorem 3.8. Clearly, T_{f} is a Fredholm operator in $\mathcal{L}\left(\mathcal{H}^{2}\right)$ if and only if $\left[T_{f}\right]$ is invertible in $\mathscr{T} / \mathcal{K}\left(\mathcal{H}^{2}\right)$. In view of the fact that $\mathscr{T} / \mathcal{K}\left(\mathcal{H}^{2}\right) \cong C(\mathbb{T})$, invertibility of $\left[T_{f}\right]$ requires the invertibility of f.

Supposing that f is invertible, write $f(z)=z^{n} e^{\psi(z)}$ for some $n \in \mathbb{Z}$ and $\psi \in C(\mathbb{T})$. For $0 \leq s \leq 1$ consider the function $f_{s}(z)=z^{n} e^{s \psi(z)}$. Then $s \mapsto f_{s}$ is a continuous map from $[0,1]$ to non-vanishing functions on \mathbb{T}. Hence all operators $T_{f_{s}}$ are Fredholm operators, and their index is the same, so

$$
\inf T_{f}=\operatorname{ind} T_{f_{1}}=\operatorname{ind} T_{f_{0}}=\operatorname{ind} T_{z^{n}}=-n,
$$

where, for the last equality, we use the fact that $T_{z^{n}}$ acts like a shift operator on the functions in \mathcal{H}^{2}.

[^0]: ${ }^{4}$ A bounded linear operator P on a Hilbert space is an orthogonal projection, if $P^{2}=$ $P=P^{*}$.

[^1]: ${ }^{5}$ Trigonometric polynomials are functions of the form $\sum_{|k| \leq N} a_{k} z^{k}$ for some N.

[^2]: ${ }^{6}$ Suppose that $f\left(z_{0}\right) \neq 0$. Then $f(z) \neq 0$ for all z in a neighborhood U of z_{0}. Choose a function $\phi \in C_{c}(U)$ which is equal to 1 near z_{0}. Then $M_{\phi f-1} M_{f}=M_{\phi}$. An operator of this form cannot be compact, since, via a partition of unity, a finite sum of such operators furnishes the identity.

