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3. TOEPLITZ OPERATORS

3.1. Banach algebras and C*-algebras. A Banach algebra is a complex
Banach space % which is also an algebra with respect to a multiplication
that additionally satisfies

labl| < [allllbll, a,b€ 2.
It is called a C*-algebra if Z also carries an involution * satisfying
(a4 b)* =a* +b*, (ca)* =ca*, (ab)* = b*a*, and ||a*al| = ||a||?

for a,b € B,c € C. The C*-algebra £ is unital if it contains a unit 1 such
that al = la = a for all a € A.

Clearly, every closed symmetric subalgebra of L(H ), where H is a complex
Hilbert space, is a C*-algebra. The * here is the usual adjoint.

We see immediately that £(H) (unital), (H) (non-unital, if dim H = c0)
and the Calkin algebra L£(H)/IC(H) are C*-algebras. The Calkin algebra
carries the involution [A]* = [A*].

Another example is the algebra C(X) of all continuous functions on a
compact Hausdorff space X. The involution here is complex conjugation:
f*(@) = F@) = F(@).

3.2. Theorem. Let &/ and % be C*-algebras and let ¢ : &/ — % be a
C*-algebra morphism. Then ||¢| < 1.

If o/ and A are unital and ¢ is injective with ¢(1,/) = 1, then ¢ even is
an isometry, i.e. ||¢(a)|| = ||a|| for all a € <.

3.3. The Hardy Space. We denote by T = {z € C : |z|] = 1} the unit
circle in C. Each function u € L?(T) has a Fourier series u(-) = Y, ., are™®".
The map u + (ax)rez is an isomorphism L?(T) — *(Z).

On T, z = €', so that e = 2¥ k € Z, and we can write the Fourier

series also in the form
u= Z anz®.

keZ
By P : L*(T) — L?(T) we denote the orthogonal projection®
(1) u= Zakzk — Pu = Zakzk.
keZ k>0

Orthogonality follows from the fact that for u = > a2, v = 3 bp2¥ in L2
we have (u,v) = >,z apby, so that

(Pu,v) = Zakbk = (u, Pv).
k>0
Then
M =H*(T) ={ue L*(T) :u= ) arz"} =im P = ker(I — P)
k>0
is a closed subspace of L?(T), the Hardy space on T.

From (1) we see immediately that #2(T) consists of all u € L?(T) which
have a holomorphic extension to {z € C: |z| < 1}.

4A bounded linear operator P on a Hilbert space is an orthogonal projection, if P? =
P =P
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Similarly, we can define the spaces HP(T), 1 < p < oo, consisting of those
u € LP(T), for which u = > ;- arpz*. We note that for f € H> we have

fu € H? all H%: In fact, the product is in L?(T), since f € L*°, and it has
no negative Fourier coefficients by multiplying the Fourier series.

3.4. Toeplitz operators. Let f € L>°(T). Then we can define the Toeplitz
operator Ty associated with f by
Ty : L*(T) — L*(T),u — PM¢Pu,

where My is the operator of multiplication by f It has the following proper-
ties
(a) The map f + T} is linear and continuous from L> to £(L*(T)).
(b) T} = T%
(c) Ty =TsT, for f,g € H™
(d) We may also consider T as an operator on H?(T); the above properties

continue to hold.

Proof. (a) The map is clearly linear. Continuity follows from the fact that

I1P(fPu)ll2 < [|fPully < [ flloo | Pullz < [|.flloollell2,
where we have used that an orthogonal projection has norm < 1.
(b) (PfPu,v) = (u, PTP).
(¢) In view of the fact that M, maps H? to H?, we have Ty,u = P(fgPu) =

PfPgPu =" PFPPgPu = Ty Tyu. 0
3.5. Lemma. Let f € C(T). Then (I — P)M;P € K(L*(T)).

Proof. By Weierstrak’s theorem, each function in C(T) can be approximated
uniformly by trigonometric polynomials®. Hence there exists a sequence ( f,)
of trigonometric polynomials with f, — f in L°°(T). Then

(I = P)YMgP — (I = P)My, P|| = |[(I = P)My—p, Pl < |[f = falloo = 0.

Since the compact operators form a closed subset of the bounded operators,
it suffices to prove the assertion for each f,. By linearity, we may even
restrict ourselves to the case where f(z) = 2™ for some m € Z. But then,
for u =Y apz¥, we have

(I-P)MjPu=(I-P)Y ap*m= Y a2
k>0 k>0,m+k<0
Hence (I — P)M;P is a finite rank operator and therefore compact. O

3.6. Theorem. Let f,g € C(T). Then
(a) TyT, — Ty, is a compact operator on H>
(b) Ty € K(H?) if and only if f = 0.

Proof. (a) PMyPMyP = PMyMy—PM;(I—P)M,P = PM;,P+ K, where
K is compact by Lemma 3.5.

5rI‘rigonometric polynomials are functions of the form ZI KI<N arz" for some N.
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(b) Since (I — P)M;/P is compact, we see that PM;P is compact if and
only if M;P is compact. On H?2, however, M¢P = My, and a multiplication
operator My is compact if and only if f = 0.6 O
3.7. The Toeplitz algebra. We define the Toeplitz algebra .7 as the
smallest closed subalgebra of £(#H?) which contains all operators Ty, f €
C(T). Since T}“ = TT’ this subalgebra is automatically closed under taking
adjoints. Hence .7 is a C*-algebra. Actually, the Toeplitz algebra is one of

the most important examples of a C*-algebra.
We have

(a) K(H*))CT.

(b)  K(H?) is the closure of the ideal generated by all commutators [T, T,],
f,9€C(T).

(c) T/K(H?)is a C*-algebra isomorphic to C(T) via the C*-algebra iso-
morphism ¢ : f — [T¥].

(d) Every element of .7 can be written (uniquely) in the form Ty + K for
some f € C(T) and K € K(H?).

Proof. (a) It is sufficient to show that .7 contains all finite rank operators.
Those are of the form

u > (u, 2™)z" for suitable m,n € Ny,

i.e. the maps u =Y cx2" = 2™ = (™) Ton-m. For m € N

m—1
(Ty — TomTym)u = chzk —Tom Z R = Z Rz
k>0 k>m k=0

Using the above construction for m + 1 and m, and taking the difference, we
see that .7 contains all projections ) cx2® = emz™, m > 0. So 1.7 contains
the finite rank operators and therefore K(H?).

(b) Let us denote for the moment by C the closed ideal generated by all
commutators. Every commutator is a compact operator by Theorem 3.6(a),
so C C K(H?). By Theorem 3.6(a) and the computation above,

Ty-mTom — Tom Ty = T) — TomTy—m € C N K(H?)

for m € N. As we saw, these operators generate all finite rank operators.
Hence C = K(H?).

(c) T /K(H?) carries the quotient norm and the involution * defined by
[T]* = [T*] inherited from L£(#H?). In particular, it is #-invariant and a C*-
algebra. As we know, C'(T) also is a C*-algebra. Let us check that the map
¢ : f— [Ty] is a C*-algebra morphism:

(i) o(f) + colg) = [Tyl + c[Ty] = [Ty + Ty = [Triegl = (f + cg),
frgeC(T),ceC
3.5

(i) o(f)" = [Ty]* = [(Ty)*] = [T7] = 6(F)

6Suppose that f(z0) # 0. Then f(z) # 0 for all z in a neighborhood U of zy. Choose
a function ¢ € C.(U) which is equal to 1 near zo. Then My ;-1 My = My. An operator of
this form cannot be compact, since, via a partition of unity, a finite sum of such operators
furnishes the identity.
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3.6(a)
(iii)  o(f)o(g) = [TA[Ty] =" [Tyel = o(f9)-
Moreover, we know from Theorem 3.6(b) that ¢ is injective. We will next
show that it is also surjective. By definition, the operators of the form T’
generate 7. Since TyTy — Ty, is compact for all f, g, the elements of the
form [Ty], f € C(T), form a dense set in .7 /K(H?). According to Theorem
3.2, ¢ is an isometry. Hence the image of ¢ is closed. Since it is also dense,
it is all of T /K(H?).

(d) This is an immediate consequence of the fact that ¢ is surjective. [

3.8. Theorem. An operator Ty is a Fredholm operator in £L(H?) if and
only if f(z) # 0 for all z € T. In this case, the index is given by

indTy = —wind f,
where wind f is the winding number of f around the origin.

Before going into the proof, we recall that for a piecewise smooth function
f the winding number is given by
1 1 1 2w gl it it
wind f = ,/d;;: R A G
2mi Jy 2 21t Jo  f(e®)
If f is merely continuous, we use the following lemma.

3.9. Lemma. Given a continuous map f : T — C\ {0} there exists a unique
n € Z and a function ¢ € C(T), such that f(z) = z"e¥®). The number n is
the winding number of f.

Proof. Suppose first that |f(z) — 1| < 1. Then we can write f = e¥ for 1) =
In f. Suppose next that we have f; and fo with |f2(2) — f1(2)] < |If; Ml
Then |fa(2)/f1(2) — 1| < 1 and, as above, we can write fo/f1 = e¥ or,
equivalently fo = fie¥. Hence, if the assertion holds for f;, then also for f,.
We know that we can approximate every continuous function uniformly by
a trigonometric polynomial. So we can replace f by a function of the form
ZszfN a,z". Since we can write the latter in the form z = Eivsz apz" N,
we may even assume that f = 224:0 by 2" for suitable by. This is a polynomial
in z which can be written as a product

M M
Z bzt = ¢ H(z — i)y
k=0 k=1

and it is clearly sufficient to show the assertion for each term. So let f(z) =
z — M. Since f has no zero on T, we have [A\g| # 1. For |[\x| < 1 we have
[f(z) =2l =l <1= 27
and hence f(z) = ze¥ for some 1. For |\x| > 1 we have
[CEPRDESINES

and hence 1 — )\lzlz =e¥or f =2—X = \e? = e¥ for suitable 1;
Summing up, we obtain the desired representation of the original f in the
form f = 2"e?.

Suppose we could write f = z"e¥ = 2™e? for m,n € Z and ¢, € C(T).
Then 2™~ " = ¢¥~?. This, however requires that m = n, since the function
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e?~¥ can be connected by a homotopy through invertible functions to the
constant function 1 (e.g. take gs = e5(*~%) 0 < s < 1), while this is not
possible for zF, k # 0, since these functions have winding number k. O

We can now prove Theorem 3.8. Clearly, T is a Fredholm operator in
L(H?) if and only if [Ty] is invertible in .7 /K(H?). In view of the fact that
T /K(H?) = C(T), invertibility of [T}] requires the invertibility of f.

Supposing that f is invertible, write f(z) = 2"e¥(?) for some n € Z and
Y € C(T). For 0 < s < 1 consider the function fy(z) = 2"e*¥(*). Then
s +— fs is a continuous map from [0, 1] to non-vanishing functions on T.
Hence all operators T, are Fredholm operators, and their index is the same,
SO

infTy =ind Ty, =ind Ty =indTyn = —n,
where, for the last equality, we use the fact that T,» acts like a shift operator
on the functions in H?. O



