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3. Toeplitz Operators

3.1. Banach algebras and C⇤-algebras. A Banach algebra is a complex
Banach space B which is also an algebra with respect to a multiplication
that additionally satisfies

kabk  kakkbk, a, b 2 B.

It is called a C⇤-algebra if B also carries an involution ⇤ satisfying
(a+ b)⇤ = a⇤ + b⇤, (ca)⇤ = ca⇤, (ab)⇤ = b⇤a⇤, and ka⇤ak = kak2

for a, b 2 B, c 2 C. The C⇤-algebra B is unital if it contains a unit 1 such
that a1 = 1a = a for all a 2 B.

Clearly, every closed symmetric subalgebra of L(H), where H is a complex
Hilbert space, is a C⇤-algebra. The ⇤ here is the usual adjoint.

We see immediately that L(H) (unital), K(H) (non-unital, if dimH = 1)
and the Calkin algebra L(H)/K(H) are C⇤-algebras. The Calkin algebra
carries the involution [A]

⇤
= [A⇤

].
Another example is the algebra C(X) of all continuous functions on a

compact Hausdorff space X. The involution here is complex conjugation:
f⇤

(x) = f(x) = f(x).
3.2. Theorem. Let A and B be C⇤-algebras and let � : A ! B be a
C⇤-algebra morphism. Then k�k  1.

If A and B are unital and � is injective with �(1A ) = 1B, then � even is
an isometry, i.e. k�(a)k = kak for all a 2 A .
3.3. The Hardy Space. We denote by T = {z 2 C : |z| = 1} the unit
circle in C. Each function u 2 L2

(T) has a Fourier series u(·) =
P

k2Z ake
ik·.

The map u 7! (ak)k2Z is an isomorphism L2
(T) ! l2(Z).

On T, z = eit, so that eikt = zk, k 2 Z, and we can write the Fourier
series also in the form

u =

X

k2Z
akz

k.

By P : L2
(T) ! L2

(T) we denote the orthogonal projection4

u =

X

k2Z
akz

k
7! Pu =

X

k�0

akz
k.(1)

Orthogonality follows from the fact that for u =
P

akzk, v =
P

bkzk in L2

we have hu, vi =
P

k2Z akbk, so that

hPu, vi =
X

k�0

akbk = hu, Pvi.

Then
H

2
= H

2
(T) = {u 2 L2

(T) : u =

X

k�0

akz
k
} = imP = ker(I � P )

is a closed subspace of L2
(T), the Hardy space on T.

From (1) we see immediately that H
2
(T) consists of all u 2 L2

(T) which
have a holomorphic extension to {z 2 C : |z| < 1}.

4
A bounded linear operator P on a Hilbert space is an orthogonal projection, if P

2 =
P = P

⇤
.
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Similarly, we can define the spaces Hp
(T), 1  p  1, consisting of those

u 2 Lp
(T), for which u =

P
k�0 akz

k. We note that for f 2 H
1 we have

fu 2 H
2 all H2: In fact, the product is in L2

(T), since f 2 L1, and it has
no negative Fourier coefficients by multiplying the Fourier series.

3.4. Toeplitz operators. Let f 2 L1
(T). Then we can define the Toeplitz

operator Tf associated with f by

Tf : L2
(T) ! L2

(T), u 7! PMfPu,

where Mf is the operator of multiplication by f It has the following proper-
ties
(a) The map f 7! Tf is linear and continuous from L1 to L(L2

(T)).
(b) T ⇤

f
= T

f

(c) Tfg = TfTg for f, g 2 H
1

(d) We may also consider Tf as an operator on H
2
(T); the above properties

continue to hold.

Proof. (a) The map is clearly linear. Continuity follows from the fact that

kP (fPu)k2  kfPuk2  kfk1kPuk2  kfk1kuk2,

where we have used that an orthogonal projection has norm  1.
(b) hPfPu, vi = hu, PfPvi.
(c) In view of the fact that Mg maps H2 to H

2, we have Tfgu = P (fgPu) =

PfPgPu
P

2=P
= PfPPgPu = TfTgu. ⇤

3.5. Lemma. Let f 2 C(T). Then (I � P )MfP 2 K(L2
(T)).

Proof. By Weierstraß’s theorem, each function in C(T) can be approximated
uniformly by trigonometric polynomials5. Hence there exists a sequence (fn)
of trigonometric polynomials with fn ! f in L1

(T). Then

k(I � P )MfP � (I � P )MfnPk = k(I � P )Mf�fnPk  kf � fnk1 ! 0.

Since the compact operators form a closed subset of the bounded operators,
it suffices to prove the assertion for each fn. By linearity, we may even
restrict ourselves to the case where f(z) = zm for some m 2 Z. But then,
for u =

P
akzk, we have

(I � P )MfPu = (I � P )

X

k�0

akz
k+m

=

X

k�0,m+k<0

akz
k.

Hence (I � P )MfP is a finite rank operator and therefore compact. ⇤
3.6. Theorem. Let f, g 2 C(T). Then
(a) TfTg � Tfg is a compact operator on H

2

(b) Tf 2 K(H
2
) if and only if f = 0.

Proof. (a) PMfPMgP = PMfMg�PMf (I�P )MgP = PMfgP+K, where
K is compact by Lemma 3.5.

5
Trigonometric polynomials are functions of the form

P
|k|N akz

k
for some N .
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(b) Since (I � P )MfP is compact, we see that PMfP is compact if and
only if MfP is compact. On H

2, however, MfP = Mf , and a multiplication
operator Mf is compact if and only if f = 0.6 ⇤
3.7. The Toeplitz algebra. We define the Toeplitz algebra T as the
smallest closed subalgebra of L(H

2
) which contains all operators Tf , f 2

C(T). Since T ⇤
f
= T

f
, this subalgebra is automatically closed under taking

adjoints. Hence T is a C⇤-algebra. Actually, the Toeplitz algebra is one of
the most important examples of a C⇤-algebra.

We have
(a) K(H

2
) ✓ T .

(b) K(H
2
) is the closure of the ideal generated by all commutators [Tf , Tg],

f, g 2 C(T).
(c) T /K(H

2
) is a C⇤-algebra isomorphic to C(T) via the C⇤-algebra iso-

morphism � : f 7! [Tf ].
(d) Every element of T can be written (uniquely) in the form Tf +K for

some f 2 C(T) and K 2 K(H
2
).

Proof. (a) It is sufficient to show that T contains all finite rank operators.
Those are of the form

u 7! hu, zmizn for suitable m,n 2 N0,

i.e. the maps u =
P

ckzk 7! cmzn = (cmzm)Tzn�m . For m 2 N

(T1 � TzmTz�m)u =

X

k�0

ckz
k
� Tzm

X

k�m

ckz
k�m

=

m�1X

k=0

ckz
k.

Using the above construction for m+1 and m, and taking the difference, we
see that T contains all projections

P
ckzk 7! cmzm, m � 0. So IT contains

the finite rank operators and therefore K(H
2
).

(b) Let us denote for the moment by C the closed ideal generated by all
commutators. Every commutator is a compact operator by Theorem 3.6(a),
so C ✓ K(H

2
). By Theorem 3.6(a) and the computation above,

Tz�mTzm � TzmTz�m = T1 � TzmTz�m 2 C \K(H
2
)

for m 2 N. As we saw, these operators generate all finite rank operators.
Hence C = K(H

2
).

(c) T /K(H
2
) carries the quotient norm and the involution ⇤ defined by

[T ]⇤ = [T ⇤
] inherited from L(H

2
). In particular, it is ⇤-invariant and a C⇤-

algebra. As we know, C(T) also is a C⇤-algebra. Let us check that the map
� : f 7! [Tf ] is a C⇤-algebra morphism:
(i) �(f) + c�(g) = [Tf ] + c[Tg] = [Tf + cTg] = [Tf+cg] = �(f + cg),

f, g 2 C(T), c 2 C.

(ii) �(f)⇤ = [Tf ]
⇤
= [(Tf )

⇤
]

3.5
= [T

f
] = �(f)

6
Suppose that f(z0) 6= 0. Then f(z) 6= 0 for all z in a neighborhood U of z0. Choose

a function � 2 Cc(U) which is equal to 1 near z0. Then M�f�1Mf = M�. An operator of

this form cannot be compact, since, via a partition of unity, a finite sum of such operators

furnishes the identity.
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(iii) �(f)�(g) = [Tf ][Tg]
3.6(a)
= [Tfg] = �(fg).

Moreover, we know from Theorem 3.6(b) that � is injective. We will next
show that it is also surjective. By definition, the operators of the form Tf

generate T . Since TfTg � Tfg is compact for all f, g, the elements of the
form [Tf ], f 2 C(T), form a dense set in T /K(H

2
). According to Theorem

3.2, � is an isometry. Hence the image of � is closed. Since it is also dense,
it is all of T /K(H

2
).

(d) This is an immediate consequence of the fact that � is surjective. ⇤
3.8. Theorem. An operator Tf is a Fredholm operator in L(H

2
) if and

only if f(z) 6= 0 for all z 2 T. In this case, the index is given by
indTf = �wind f,

where wind f is the winding number of f around the origin.

Before going into the proof, we recall that for a piecewise smooth function
f the winding number is given by

wind f =
1

2⇡i

Z

f

1

z
dz =

1

2⇡i

Z 2⇡

0

f 0
(eit)eit

f(eit)
dt.

If f is merely continuous, we use the following lemma.

3.9. Lemma. Given a continuous map f : T ! C\{0} there exists a unique
n 2 Z and a function  2 C(T), such that f(z) = zne (z). The number n is
the winding number of f .

Proof. Suppose first that |f(z)� 1| < 1. Then we can write f = e for  =

ln f . Suppose next that we have f1 and f2 with |f2(z) � f1(z)| < kf�1
1 k

�1
1 .

Then |f2(z)/f1(z) � 1| < 1 and, as above, we can write f2/f1 = e or,
equivalently f2 = f1e . Hence, if the assertion holds for f1, then also for f2.
We know that we can approximate every continuous function uniformly by
a trigonometric polynomial. So we can replace f by a function of the formP

N

k=�N
akzk. Since we can write the latter in the form z�N

P
N

k=�N
akzk+N ,

we may even assume that f =
P

M

k=0 bkz
k for suitable bk. This is a polynomial

in z which can be written as a product
MX

k=0

bkz
k
= c

MY

k=1

(z � �k),

and it is clearly sufficient to show the assertion for each term. So let f(z) =
z � �k. Since f has no zero on T, we have |�k| 6= 1. For |�k| < 1 we have

|f(z)� z| = |�k| < 1 = kz�1
k
�1
1

and hence f(z) = ze for some  . For |�k| > 1 we have

k(1� ��1
k

z)� 1k1 < 1

and hence 1 � ��1
k

z = e or f = z � �k = �ke = e ̃ for suitable  ̃.
Summing up, we obtain the desired representation of the original f in the
form f = zne .

Suppose we could write f = zne = zme� for m,n 2 Z and �, 2 C(T).
Then zm�n

= e ��. This, however requires that m = n, since the function
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e�� can be connected by a homotopy through invertible functions to the
constant function 1 (e.g. take gs = es(�� ), 0  s  1), while this is not
possible for zk, k 6= 0, since these functions have winding number k. ⇤

We can now prove Theorem 3.8. Clearly, Tf is a Fredholm operator in
L(H

2
) if and only if [Tf ] is invertible in T /K(H

2
). In view of the fact that

T /K(H
2
) ⇠= C(T), invertibility of [Tf ] requires the invertibility of f .

Supposing that f is invertible, write f(z) = zne (z) for some n 2 Z and
 2 C(T). For 0  s  1 consider the function fs(z) = znes (z). Then
s 7! fs is a continuous map from [0, 1] to non-vanishing functions on T.
Hence all operators Tfs are Fredholm operators, and their index is the same,
so

inf Tf = indTf1 = indTf0 = indTzn = �n,

where, for the last equality, we use the fact that Tzn acts like a shift operator
on the functions in H

2. ⇤


