3. TOEPLITZ OPERATORS

3.1. Banach algebras and C^* -algebras. A Banach algebra is a complex Banach space ${\mathscr B}$ which is also an algebra with respect to a multiplication that additionally satisfies

$$||ab|| \le ||a|| ||b||, \quad a, b \in \mathscr{B}$$

It is called a C^* -algebra if \mathscr{B} also carries an involution * satisfying

$$(a+b)^* = a^* + b^*, (ca)^* = \overline{c}a^*, (ab)^* = b^*a^*, \text{ and } ||a^*a|| = ||a||^2$$

for $a, b \in \mathcal{B}, c \in \mathbb{C}$. The C^{*}-algebra \mathcal{B} is *unital* if it contains a unit 1 such that a1 = 1a = a for all $a \in \mathscr{B}$.

Clearly, every closed symmetric subalgebra of $\mathcal{L}(H)$, where H is a complex Hilbert space, is a C^* -algebra. The * here is the usual adjoint.

We see immediately that $\mathcal{L}(H)$ (unital), $\mathcal{K}(H)$ (non-unital, if dim $H = \infty$) and the Calkin algebra $\mathcal{L}(H)/\mathcal{K}(H)$ are C^{*}-algebras. The Calkin algebra carries the involution $[A]^* = [A^*]$.

Another example is the algebra C(X) of all continuous functions on a compact Hausdorff space X. The involution here is complex conjugation: $f^*(x) = f(x) = f(x).$

3.2. Theorem. Let \mathscr{A} and \mathscr{B} be C^* -algebras and let $\phi : \mathscr{A} \to \mathscr{B}$ be a C^* -algebra morphism. Then $\|\phi\| \leq 1$.

If \mathscr{A} and \mathscr{B} are unital and ϕ is injective with $\phi(1_{\mathscr{A}}) = 1_{\mathscr{B}}$, then ϕ even is an isometry, i.e. $\|\phi(a)\| = \|a\|$ for all $a \in \mathscr{A}$.

3.3. The Hardy Space. We denote by $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ the unit circle in \mathbb{C} . Each function $u \in L^2(\mathbb{T})$ has a Fourier series $u(\cdot) = \sum_{k \in \mathbb{Z}} a_k e^{ik \cdot}$. The map $u \mapsto (a_k)_{k \in \mathbb{Z}}$ is an isomorphism $L^2(\mathbb{T}) \to l^2(\mathbb{Z})$. On \mathbb{T} , $z = e^{it}$, so that $e^{ikt} = z^k$, $k \in \mathbb{Z}$, and we can write the Fourier

series also in the form

$$u = \sum_{k \in \mathbb{Z}} a_k z^k$$

By $P: L^2(\mathbb{T}) \to L^2(\mathbb{T})$ we denote the orthogonal projection⁴

(1)
$$u = \sum_{k \in \mathbb{Z}} a_k z^k \mapsto P u = \sum_{k \ge 0} a_k z^k$$

Orthogonality follows from the fact that for $u = \sum a_k z^k$, $v = \sum b_k z^k$ in L^2 we have $\langle u, v \rangle = \sum_{k \in \mathbb{Z}} a_k b_k$, so that

$$\langle Pu, v \rangle = \sum_{k \ge 0} a_k b_k = \langle u, Pv \rangle.$$

Then

$$\mathcal{H}^2 = \mathcal{H}^2(\mathbb{T}) = \{ u \in L^2(\mathbb{T}) : u = \sum_{k \ge 0} a_k z^k \} = \operatorname{im} P = \ker(I - P)$$

is a closed subspace of $L^2(\mathbb{T})$, the Hardy space on \mathbb{T} .

From (1) we see immediately that $\mathcal{H}^2(\mathbb{T})$ consists of all $u \in L^2(\mathbb{T})$ which have a holomorphic extension to $\{z \in \mathbb{C} : |z| < 1\}$.

⁴A bounded linear operator P on a Hilbert space is an orthogonal projection, if $P^2 =$ $P = P^*.$

Similarly, we can define the spaces $\mathcal{H}^p(\mathbb{T})$, $1 \leq p \leq \infty$, consisting of those $u \in L^p(\mathbb{T})$, for which $u = \sum_{k\geq 0} a_k z^k$. We note that for $f \in \mathcal{H}^\infty$ we have $fu \in \mathcal{H}^2$ all \mathcal{H}^2 : In fact, the product is in $L^2(\mathbb{T})$, since $f \in L^\infty$, and it has no negative Fourier coefficients by multiplying the Fourier series.

3.4. Toeplitz operators. Let $f \in L^{\infty}(\mathbb{T})$. Then we can define the Toeplitz operator T_f associated with f by

$$T_f: L^2(\mathbb{T}) \to L^2(\mathbb{T}), u \mapsto PM_f Pu,$$

where M_f is the operator of multiplication by f It has the following properties

- (a) The map $f \mapsto T_f$ is linear and continuous from L^{∞} to $\mathcal{L}(L^2(\mathbb{T}))$.
- (b) $T_f^* = T_{\overline{f}}$
- (c) $T_{fq} = T_f T_q \text{ for } f, g \in \mathcal{H}^{\infty}$
- (d) We may also consider T_f as an operator on $\mathcal{H}^2(\mathbb{T})$; the above properties continue to hold.

Proof. (a) The map is clearly linear. Continuity follows from the fact that

$$||P(fPu)||_2 \le ||fPu||_2 \le ||f||_{\infty} ||Pu||_2 \le ||f||_{\infty} ||u||_2,$$

where we have used that an orthogonal projection has norm ≤ 1 .

(b) $\langle PfPu, v \rangle = \langle u, P\overline{f}Pv \rangle.$

(c) In view of the fact that M_g maps \mathcal{H}^2 to \mathcal{H}^2 , we have $T_{fg}u = P(fgPu) = PfPgPu \stackrel{P^2=P}{=} PfPPgPu = T_fT_gu.$

3.5. Lemma. Let $f \in C(\mathbb{T})$. Then $(I - P)M_f P \in \mathcal{K}(L^2(\mathbb{T}))$.

Proof. By Weierstraß's theorem, each function in $C(\mathbb{T})$ can be approximated uniformly by trigonometric polynomials⁵. Hence there exists a sequence (f_n) of trigonometric polynomials with $f_n \to f$ in $L^{\infty}(\mathbb{T})$. Then

$$\|(I-P)M_fP - (I-P)M_{f_n}P\| = \|(I-P)M_{f-f_n}P\| \le \|f - f_n\|_{\infty} \to 0.$$

Since the compact operators form a closed subset of the bounded operators, it suffices to prove the assertion for each f_n . By linearity, we may even restrict ourselves to the case where $f(z) = z^m$ for some $m \in \mathbb{Z}$. But then, for $u = \sum a_k z^k$, we have

$$(I-P)M_fPu = (I-P)\sum_{k\geq 0} a_k z^{k+m} = \sum_{k\geq 0, m+k<0} a_k z^k.$$

Hence $(I - P)M_f P$ is a finite rank operator and therefore compact. \Box

3.6. Theorem. Let $f, g \in C(\mathbb{T})$. Then

- (a) $T_f T_g T_{fg}$ is a compact operator on \mathcal{H}^2
- (b) $T_f \in \mathcal{K}(\mathcal{H}^2)$ if and only if f = 0.

Proof. (a) $PM_fPM_gP = PM_fM_g - PM_f(I-P)M_gP = PM_{fg}P + K$, where K is compact by Lemma 3.5.

⁵Trigonometric polynomials are functions of the form $\sum_{|k| \leq N} a_k z^k$ for some N.

(b) Since $(I - P)M_fP$ is compact, we see that PM_fP is compact if and only if M_fP is compact. On \mathcal{H}^2 , however, $M_fP = M_f$, and a multiplication operator M_f is compact if and only if f = 0.6

3.7. The Toeplitz algebra. We define the Toeplitz algebra \mathscr{T} as the smallest closed subalgebra of $\mathcal{L}(\mathcal{H}^2)$ which contains all operators T_f , $f \in C(\mathbb{T})$. Since $T_f^* = T_{\overline{f}}$, this subalgebra is automatically closed under taking adjoints. Hence \mathscr{T} is a C^* -algebra. Actually, the Toeplitz algebra is one of the most important examples of a C^* -algebra.

We have

- (a) $\mathcal{K}(\mathcal{H}^2) \subseteq \mathscr{T}.$
- (b) $\mathcal{K}(\mathcal{H}^2)$ is the closure of the ideal generated by all commutators $[T_f, T_g]$, $f, g \in C(\mathbb{T})$.
- (c) $\mathscr{T}/\mathcal{K}(\mathcal{H}^2)$ is a C^* -algebra isomorphic to $C(\mathbb{T})$ via the C^* -algebra isomorphism $\phi: f \mapsto [T_f]$.
- (d) Every element of \mathscr{T} can be written (uniquely) in the form $T_f + K$ for some $f \in C(\mathbb{T})$ and $K \in \mathcal{K}(\mathcal{H}^2)$.

Proof. (a) It is sufficient to show that \mathscr{T} contains all finite rank operators. Those are of the form

$$u \mapsto \langle u, z^m \rangle z^n$$
 for suitable $m, n \in \mathbb{N}_0$,

i.e. the maps $u = \sum c_k z^k \mapsto c_m z^n = (c_m z^m) T_{z^{n-m}}$. For $m \in \mathbb{N}$

$$(T_1 - T_{z^m} T_{z^{-m}})u = \sum_{k \ge 0} c_k z^k - T_{z^m} \sum_{k \ge m} c_k z^{k-m} = \sum_{k=0}^{m-1} c_k z^k.$$

Using the above construction for m+1 and m, and taking the difference, we see that \mathscr{T} contains all projections $\sum c_k z^k \mapsto c_m z^m$, $m \ge 0$. So $I\mathscr{T}$ contains the finite rank operators and therefore $\mathcal{K}(\mathcal{H}^2)$.

(b) Let us denote for the moment by C the closed ideal generated by all commutators. Every commutator is a compact operator by Theorem 3.6(a), so $C \subseteq \mathcal{K}(\mathcal{H}^2)$. By Theorem 3.6(a) and the computation above,

$$T_{z^{-m}}T_{z^m} - T_{z^m}T_{z^{-m}} = T_1 - T_{z^m}T_{z^{-m}} \in \mathcal{C} \cap \mathcal{K}(\mathcal{H}^2)$$

for $m \in \mathbb{N}$. As we saw, these operators generate all finite rank operators. Hence $\mathcal{C} = \mathcal{K}(\mathcal{H}^2)$.

(c) $\mathscr{T}/\mathcal{K}(\mathcal{H}^2)$ carries the quotient norm and the involution * defined by $[T]^* = [T^*]$ inherited from $\mathcal{L}(\mathcal{H}^2)$. In particular, it is *-invariant and a C^* -algebra. As we know, $C(\mathbb{T})$ also is a C^* -algebra. Let us check that the map $\phi: f \mapsto [T_f]$ is a C^* -algebra morphism:

(i) $\phi(f) + c\phi(g) = [T_f] + c[T_g] = [T_f + cT_g] = [T_{f+cg}] = \phi(f+cg),$ $f, g \in C(\mathbb{T}), c \in \mathbb{C}.$

(ii)
$$\phi(f)^* = [T_f]^* = [(T_f)^*] \stackrel{3.5}{=} [T_{\overline{f}}] = \phi(\overline{f})$$

⁶Suppose that $f(z_0) \neq 0$. Then $f(z) \neq 0$ for all z in a neighborhood U of z_0 . Choose a function $\phi \in C_c(U)$ which is equal to 1 near z_0 . Then $M_{\phi f^{-1}}M_f = M_{\phi}$. An operator of this form cannot be compact, since, via a partition of unity, a finite sum of such operators furnishes the identity.

(iii) $\phi(f)\phi(g) = [T_f][T_g] \stackrel{3.6(a)}{=} [T_{fg}] = \phi(fg).$

Moreover, we know from Theorem 3.6(b) that ϕ is injective. We will next show that it is also surjective. By definition, the operators of the form T_f generate \mathscr{T} . Since $T_f T_g - T_{fg}$ is compact for all f, g, the elements of the form $[T_f], f \in C(\mathbb{T})$, form a dense set in $\mathscr{T}/\mathcal{K}(\mathcal{H}^2)$. According to Theorem 3.2, ϕ is an isometry. Hence the image of ϕ is closed. Since it is also dense, it is all of $\mathscr{T}/\mathcal{K}(\mathcal{H}^2)$.

(d) This is an immediate consequence of the fact that ϕ is surjective. \Box

3.8. Theorem. An operator T_f is a Fredholm operator in $\mathcal{L}(\mathcal{H}^2)$ if and only if $f(z) \neq 0$ for all $z \in \mathbb{T}$. In this case, the index is given by

$$\operatorname{ind} T_f = -\operatorname{wind} f,$$

where wind f is the winding number of f around the origin.

Before going into the proof, we recall that for a piecewise smooth function f the winding number is given by

wind
$$f = \frac{1}{2\pi i} \int_{f} \frac{1}{z} dz = \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f'(e^{it})e^{it}}{f(e^{it})} dt.$$

If f is merely continuous, we use the following lemma.

3.9. Lemma. Given a continuous map $f : \mathbb{T} \to \mathbb{C} \setminus \{0\}$ there exists a unique $n \in \mathbb{Z}$ and a function $\psi \in C(\mathbb{T})$, such that $f(z) = z^n e^{\psi(z)}$. The number n is the winding number of f.

Proof. Suppose first that |f(z) - 1| < 1. Then we can write $f = e^{\psi}$ for $\psi = \ln f$. Suppose next that we have f_1 and f_2 with $|f_2(z) - f_1(z)| < ||f_1^{-1}||_{\infty}^{-1}$. Then $|f_2(z)/f_1(z) - 1| < 1$ and, as above, we can write $f_2/f_1 = e^{\psi}$ or, equivalently $f_2 = f_1 e^{\psi}$. Hence, if the assertion holds for f_1 , then also for f_2 . We know that we can approximate every continuous function uniformly by a trigonometric polynomial. So we can replace f by a function of the form $\sum_{k=-N}^{N} a_k z^k$. Since we can write the latter in the form $z^{-N} \sum_{k=-N}^{N} a_k z^{k+N}$, we may even assume that $f = \sum_{k=0}^{M} b_k z^k$ for suitable b_k . This is a polynomial in z which can be written as a product

$$\sum_{k=0}^{M} b_k z^k = c \prod_{k=1}^{M} (z - \lambda_k),$$

and it is clearly sufficient to show the assertion for each term. So let $f(z) = z - \lambda_k$. Since f has no zero on T, we have $|\lambda_k| \neq 1$. For $|\lambda_k| < 1$ we have

$$|f(z) - z| = |\lambda_k| < 1 = ||z^{-1}||_{\infty}^{-1}$$

and hence $f(z) = ze^{\psi}$ for some ψ . For $|\lambda_k| > 1$ we have

$$\|(1 - \lambda_k^{-1}z) - 1\|_{\infty} < 1$$

and hence $1 - \lambda_k^{-1} z = e^{\psi}$ or $f = z - \lambda_k = \lambda_k e^{\psi} = e^{\tilde{\psi}}$ for suitable $\tilde{\psi}$. Summing up, we obtain the desired representation of the original f in the form $f = z^n e^{\psi}$.

Suppose we could write $f = z^n e^{\psi} = z^m e^{\phi}$ for $m, n \in \mathbb{Z}$ and $\phi, \psi \in C(\mathbb{T})$. Then $z^{m-n} = e^{\psi - \phi}$. This, however requires that m = n, since the function

18

 $e^{\phi-\psi}$ can be connected by a homotopy through invertible functions to the constant function 1 (e.g. take $g_s = e^{s(\phi-\psi)}$, $0 \le s \le 1$), while this is not possible for z^k , $k \neq 0$, since these functions have winding number k.

We can now prove Theorem 3.8. Clearly, T_f is a Fredholm operator in $\mathcal{L}(\mathcal{H}^2)$ if and only if $[T_f]$ is invertible in $\mathscr{T}/\mathcal{K}(\mathcal{H}^2)$. In view of the fact that $\mathscr{T}/\mathcal{K}(\mathcal{H}^2) \cong C(\mathbb{T})$, invertibility of $[T_f]$ requires the invertibility of f.

Supposing that f is invertible, write $f(z) = z^n e^{\psi(z)}$ for some $n \in \mathbb{Z}$ and $\psi \in C(\mathbb{T})$. For $0 \leq s \leq 1$ consider the function $f_s(z) = z^n e^{s\psi(z)}$. Then $s \mapsto f_s$ is a continuous map from [0,1] to non-vanishing functions on \mathbb{T} . Hence all operators T_{f_s} are Fredholm operators, and their index is the same, \mathbf{SO}

$$\inf T_f = \inf T_{f_1} = \inf T_{f_0} = \inf T_{z^n} = -n,$$

 $\operatorname{Int} T_f = \operatorname{Ind} T_{f_1} = \operatorname{Ind} T_{f_0} = \operatorname{Ind} T_{z^n} = -n,$ where, for the last equality, we use the fact that T_{z^n} acts like a shift operator on the functions in \mathcal{H}^2 .