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3. Toeplitz Operators

3.1. Banach algebras and C⇤-algebras. A Banach algebra is a complex
Banach space B which is also an algebra with respect to a multiplication
that additionally satisfies

kabk  kakkbk, a, b 2 B.

It is called a C⇤-algebra if B also carries an involution ⇤ satisfying
(a+ b)⇤ = a⇤ + b⇤, (ca)⇤ = ca⇤, (ab)⇤ = b⇤a⇤, and ka⇤ak = kak2

for a, b 2 B, c 2 C. The C⇤-algebra B is unital if it contains a unit 1 such
that a1 = 1a = a for all a 2 B.

Clearly, every closed symmetric subalgebra of L(H), where H is a complex
Hilbert space, is a C⇤-algebra. The ⇤ here is the usual adjoint.

We see immediately that L(H) (unital), K(H) (non-unital, if dimH = 1)
and the Calkin algebra L(H)/K(H) are C⇤-algebras. The Calkin algebra
carries the involution [A]

⇤
= [A⇤

].
Another example is the algebra C(X) of all continuous functions on a

compact Hausdorff space X. The involution here is complex conjugation:
f⇤

(x) = f(x) = f(x).
3.2. Theorem. Let A and B be C⇤-algebras and let � : A ! B be a
C⇤-algebra morphism. Then k�k  1.

If A and B are unital and � is injective with �(1A ) = 1B, then � even is
an isometry, i.e. k�(a)k = kak for all a 2 A .
3.3. The Hardy Space. We denote by T = {z 2 C : |z| = 1} the unit
circle in C. Each function u 2 L2

(T) has a Fourier series u(·) =
P

k2Z ake
ik·.

The map u 7! (ak)k2Z is an isomorphism L2
(T) ! l2(Z).

On T, z = eit, so that eikt = zk, k 2 Z, and we can write the Fourier
series also in the form

u =

X

k2Z
akz

k.

By P : L2
(T) ! L2

(T) we denote the orthogonal projection4

u =

X

k2Z
akz

k
7! Pu =

X

k�0

akz
k.(1)

Orthogonality follows from the fact that for u =
P

akzk, v =
P

bkzk in L2

we have hu, vi =
P

k2Z akbk, so that

hPu, vi =
X

k�0

akbk = hu, Pvi.

Then
H

2
= H

2
(T) = {u 2 L2

(T) : u =

X

k�0

akz
k
} = imP = ker(I � P )

is a closed subspace of L2
(T), the Hardy space on T.

From (1) we see immediately that H
2
(T) consists of all u 2 L2

(T) which
have a holomorphic extension to {z 2 C : |z| < 1}.

4
A bounded linear operator P on a Hilbert space is an orthogonal projection, if P

2 =
P = P

⇤
.
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Similarly, we can define the spaces Hp
(T), 1  p  1, consisting of those

u 2 Lp
(T), for which u =

P
k�0 akz

k. We note that for f 2 H
1 we have

fu 2 H
2 all H2: In fact, the product is in L2

(T), since f 2 L1, and it has
no negative Fourier coefficients by multiplying the Fourier series.

3.4. Toeplitz operators. Let f 2 L1
(T). Then we can define the Toeplitz

operator Tf associated with f by

Tf : L2
(T) ! L2

(T), u 7! PMfPu,

where Mf is the operator of multiplication by f It has the following proper-
ties
(a) The map f 7! Tf is linear and continuous from L1 to L(L2

(T)).
(b) T ⇤

f
= T

f

(c) Tfg = TfTg for f, g 2 H
1

(d) We may also consider Tf as an operator on H
2
(T); the above properties

continue to hold.

Proof. (a) The map is clearly linear. Continuity follows from the fact that

kP (fPu)k2  kfPuk2  kfk1kPuk2  kfk1kuk2,

where we have used that an orthogonal projection has norm  1.
(b) hPfPu, vi = hu, PfPvi.
(c) In view of the fact that Mg maps H2 to H

2, we have Tfgu = P (fgPu) =

PfPgPu
P

2=P
= PfPPgPu = TfTgu. ⇤

3.5. Lemma. Let f 2 C(T). Then (I � P )MfP 2 K(L2
(T)).

Proof. By Weierstraß’s theorem, each function in C(T) can be approximated
uniformly by trigonometric polynomials5. Hence there exists a sequence (fn)
of trigonometric polynomials with fn ! f in L1

(T). Then

k(I � P )MfP � (I � P )MfnPk = k(I � P )Mf�fnPk  kf � fnk1 ! 0.

Since the compact operators form a closed subset of the bounded operators,
it suffices to prove the assertion for each fn. By linearity, we may even
restrict ourselves to the case where f(z) = zm for some m 2 Z. But then,
for u =

P
akzk, we have

(I � P )MfPu = (I � P )

X

k�0

akz
k+m

=

X

k�0,m+k<0

akz
k.

Hence (I � P )MfP is a finite rank operator and therefore compact. ⇤
3.6. Theorem. Let f, g 2 C(T). Then
(a) TfTg � Tfg is a compact operator on H

2

(b) Tf 2 K(H
2
) if and only if f = 0.

Proof. (a) PMfPMgP = PMfMg�PMf (I�P )MgP = PMfgP+K, where
K is compact by Lemma 3.5.

5
Trigonometric polynomials are functions of the form

P
|k|N akz

k
for some N .
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(b) Since (I � P )MfP is compact, we see that PMfP is compact if and
only if MfP is compact. On H

2, however, MfP = Mf , and a multiplication
operator Mf is compact if and only if f = 0.6 ⇤
3.7. The Toeplitz algebra. We define the Toeplitz algebra T as the
smallest closed subalgebra of L(H

2
) which contains all operators Tf , f 2

C(T). Since T ⇤
f
= T

f
, this subalgebra is automatically closed under taking

adjoints. Hence T is a C⇤-algebra. Actually, the Toeplitz algebra is one of
the most important examples of a C⇤-algebra.

We have
(a) K(H

2
) ✓ T .

(b) K(H
2
) is the closure of the ideal generated by all commutators [Tf , Tg],

f, g 2 C(T).
(c) T /K(H

2
) is a C⇤-algebra isomorphic to C(T) via the C⇤-algebra iso-

morphism � : f 7! [Tf ].
(d) Every element of T can be written (uniquely) in the form Tf +K for

some f 2 C(T) and K 2 K(H
2
).

Proof. (a) It is sufficient to show that T contains all finite rank operators.
Those are of the form

u 7! hu, zmizn for suitable m,n 2 N0,

i.e. the maps u =
P

ckzk 7! cmzn = (cmzm)Tzn�m . For m 2 N

(T1 � TzmTz�m)u =

X

k�0

ckz
k
� Tzm

X

k�m

ckz
k�m

=

m�1X

k=0

ckz
k.

Using the above construction for m+1 and m, and taking the difference, we
see that T contains all projections

P
ckzk 7! cmzm, m � 0. So IT contains

the finite rank operators and therefore K(H
2
).

(b) Let us denote for the moment by C the closed ideal generated by all
commutators. Every commutator is a compact operator by Theorem 3.6(a),
so C ✓ K(H

2
). By Theorem 3.6(a) and the computation above,

Tz�mTzm � TzmTz�m = T1 � TzmTz�m 2 C \K(H
2
)

for m 2 N. As we saw, these operators generate all finite rank operators.
Hence C = K(H

2
).

(c) T /K(H
2
) carries the quotient norm and the involution ⇤ defined by

[T ]⇤ = [T ⇤
] inherited from L(H

2
). In particular, it is ⇤-invariant and a C⇤-

algebra. As we know, C(T) also is a C⇤-algebra. Let us check that the map
� : f 7! [Tf ] is a C⇤-algebra morphism:
(i) �(f) + c�(g) = [Tf ] + c[Tg] = [Tf + cTg] = [Tf+cg] = �(f + cg),

f, g 2 C(T), c 2 C.

(ii) �(f)⇤ = [Tf ]
⇤
= [(Tf )

⇤
]

3.5
= [T

f
] = �(f)

6
Suppose that f(z0) 6= 0. Then f(z) 6= 0 for all z in a neighborhood U of z0. Choose

a function � 2 Cc(U) which is equal to 1 near z0. Then M�f�1Mf = M�. An operator of

this form cannot be compact, since, via a partition of unity, a finite sum of such operators

furnishes the identity.
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(iii) �(f)�(g) = [Tf ][Tg]
3.6(a)
= [Tfg] = �(fg).

Moreover, we know from Theorem 3.6(b) that � is injective. We will next
show that it is also surjective. By definition, the operators of the form Tf

generate T . Since TfTg � Tfg is compact for all f, g, the elements of the
form [Tf ], f 2 C(T), form a dense set in T /K(H

2
). According to Theorem

3.2, � is an isometry. Hence the image of � is closed. Since it is also dense,
it is all of T /K(H

2
).

(d) This is an immediate consequence of the fact that � is surjective. ⇤
3.8. Theorem. An operator Tf is a Fredholm operator in L(H

2
) if and

only if f(z) 6= 0 for all z 2 T. In this case, the index is given by
indTf = �wind f,

where wind f is the winding number of f around the origin.

Before going into the proof, we recall that for a piecewise smooth function
f the winding number is given by

wind f =
1

2⇡i

Z

f

1

z
dz =

1

2⇡i

Z 2⇡

0

f 0
(eit)eit

f(eit)
dt.

If f is merely continuous, we use the following lemma.

3.9. Lemma. Given a continuous map f : T ! C\{0} there exists a unique
n 2 Z and a function  2 C(T), such that f(z) = zne (z). The number n is
the winding number of f .

Proof. Suppose first that |f(z)� 1| < 1. Then we can write f = e for  =

ln f . Suppose next that we have f1 and f2 with |f2(z) � f1(z)| < kf�1
1 k

�1
1 .

Then |f2(z)/f1(z) � 1| < 1 and, as above, we can write f2/f1 = e or,
equivalently f2 = f1e . Hence, if the assertion holds for f1, then also for f2.
We know that we can approximate every continuous function uniformly by
a trigonometric polynomial. So we can replace f by a function of the formP

N

k=�N
akzk. Since we can write the latter in the form z�N

P
N

k=�N
akzk+N ,

we may even assume that f =
P

M

k=0 bkz
k for suitable bk. This is a polynomial

in z which can be written as a product
MX

k=0

bkz
k
= c

MY

k=1

(z � �k),

and it is clearly sufficient to show the assertion for each term. So let f(z) =
z � �k. Since f has no zero on T, we have |�k| 6= 1. For |�k| < 1 we have

|f(z)� z| = |�k| < 1 = kz�1
k
�1
1

and hence f(z) = ze for some  . For |�k| > 1 we have

k(1� ��1
k

z)� 1k1 < 1

and hence 1 � ��1
k

z = e or f = z � �k = �ke = e ̃ for suitable  ̃.
Summing up, we obtain the desired representation of the original f in the
form f = zne .

Suppose we could write f = zne = zme� for m,n 2 Z and �, 2 C(T).
Then zm�n

= e ��. This, however requires that m = n, since the function
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e�� can be connected by a homotopy through invertible functions to the
constant function 1 (e.g. take gs = es(�� ), 0  s  1), while this is not
possible for zk, k 6= 0, since these functions have winding number k. ⇤

We can now prove Theorem 3.8. Clearly, Tf is a Fredholm operator in
L(H

2
) if and only if [Tf ] is invertible in T /K(H

2
). In view of the fact that

T /K(H
2
) ⇠= C(T), invertibility of [Tf ] requires the invertibility of f .

Supposing that f is invertible, write f(z) = zne (z) for some n 2 Z and
 2 C(T). For 0  s  1 consider the function fs(z) = znes (z). Then
s 7! fs is a continuous map from [0, 1] to non-vanishing functions on T.
Hence all operators Tfs are Fredholm operators, and their index is the same,
so

inf Tf = indTf1 = indTf0 = indTzn = �n,

where, for the last equality, we use the fact that Tzn acts like a shift operator
on the functions in H

2. ⇤


