2. FREDHOLM OPERATORS

In the sequel, let X and Y be Banach spaces over R or (better) C.

2.1. Definition. An operator A in £(X,Y), the space of continuous linear
operators from X to Y, is a Fredholm! operator, if

dimker A < oo and codimim A := dim(Y/im A) < oo.
In this case, one calls
ind A = dimker A — codimim A € Z
the index of A. The quotient Y/im A is called the cokernel of A.

Of course, the notion of Fredholm operator makes sense for arbitrary vec-
tor spaces X and Y, and many properties hold also in this general situation.
The most useful results, however, namely Theorems 2.5 and 2.14, require
Banach and Hilbert spaces, respectively.

The Fredholm property can be seen as a substitute for invertibility. If A is
a Fredholm operator, the equation Au = f has solutions whenever f belongs
to a subspace of Y which has a finite-dimensional complement, while the
space of solutions is at most finite-dimensional. Clearly, an invertible oper-
ator has index zero; not every operator of index zero, however, is invertible.

The notion of a Fredholm operator is only of interest for infinite-dimensional
spaces X and Y. In fact, the isomorphism theorem tells us that X/ ker A =
im A. If both X and Y have finite dimension, then

dim X —dimker A =dimimA =dimY — codimim A

and therefore
indA =dim X —dimY.

Hence, in this case, every operator A is a Fredholm operator and the index
is actually independent of A.

2.2. Example. Let X = Y = (?(N) be the space of square integrable
sequences

CN) = {z = (v1,29,...) 1 7 € (C,Z 25| < oo}

We define the operators Sy, and Sg in £(¢?(N)), which shift the sequences
to the left and the right, respectively, by

SL(xl,.CEQ,xg, .. ) = (.732,.753, .. ) and SR(.Tth, .. ) = (0,1171,:[2, .. )

Then Sy, is surjective and has one-dimensional kernel so that ind S;, = 1.
The operator Sg is injective, and its range has codimension 1. Therefore
ind SR = —1.

An important analytic fact:
2.3. Lemma. A Fredholm operator has closed range.

lhamed after Erik Ivar Fredholm, 1866-1927. In fact, it would be more appropriate to

name them (as it its common in the Russian literature) after Fritz Noether, 1884-1941.
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Proof. Let A be a Fredholm operator and let 7 : X — X = X/ker A be
the quotient map. Endow X with the quotient norm. Then A induces the
injective mapping A’ : X — Y with range im A. Next choose an algebraic
complement Y7 of im A, and form the exterior sum Z = X @& Y;. Both X
and Y; are closed subspaces of Z, since Z carries the topology of the exterior
sum. Yj is ﬁnite—dimeinsional, and X is a Banach space, so Z is a Banach
space. The mapping A : Z — Y defined by
A@@,y) =AT+y TeX,yev,
is continuous and bijective. The inverse then is continuous by Theorem 1.3.
This in turn shows that im A = A(X) = [A7!]7}(X) is closed. O
The index behaves well under compositions:
2.4. Lemma. Let X,Y, and Z be Banach spaces. If A € L(X,Y) and

B € L(Y,Z) both are Fredholm operators, then so is the composition BA,

and
ind(BA) = ind B + ind A.
Proof. The proof, below, is purely algebraic and works on general vector
spaces. Choose X7 < X with X = ker A ® X7 und Y7, Y5, Y3 <Y such that
(1) Y = imA+kerB®Ys;
ker B = (imANkerB)® Ys;
imA = (imAnkerB)&Y].
Then
Y=Y @& (imAnkerB)®Ys ® Ys.
Next choose 77 < Z with
Z =BY1) @ B(Ys) @ Z.
Note: For x1 € Y7 and z3 € Y3 with Bxy = Bxs we have x3 — x1 € ker B,
thus z3 € Y1 + ker B C im A + ker B, hence x3 = 0 by (1).

Moreover, dim(im A Nker B) = dim ker B — dim Y5.
Bly, sy, is injective, and therefore

dim B(Y3) = dim Y3 = dim Y, ® Y5 — dim Y5 = codim im A — dim Y5.
Furthermore im BA = B(Y1),ker BA =ker A® {x € X; : Az € ker B}. We
conclude

ind BA = dim ker BA — codim im BA
dim ker A + dim im A Nker B — (dim B(Y3) + dim Z;)
= dim ker A + dim ker B — dim Y5 — codim im A + dim Y5

—codim im B

= ind B +ind A.

O

In connection with Example 2.2 we see that there exist Fredholm operators
of every index on ¢?(N).

The following theorem underlines the point of view that Fredholm opera-
tors are ‘almost’ invertible. They have inverses up to finite rank operators.
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What is remarkable is that it is sufficient to find inverses up to compact
operators to guarantee the Fredholm property. This is Atkinson’s theorem.

2.5. Theorem. For A € L(X,Y) the following are equivalent:
(i) A is a Fredholm operator.
(ii)  There exist L, R € L(Y,X) such that

LA—I=F and AR-I=F;

are finite rank operators in the respective spaces.
(iii) There exist L, R € L(Y, X) such that

LA-T=K, and AR—1I=K,

are compact operators in the respective spaces.

In case one of the conditions holds, we can choose L = R and L = R,
respectively.

We call L and L Fredholm inverses to A. We then see that L and L also
are Fredholm operators. The same applies to R and R;.

The equivalence of (i) and (ii) is a purely algebraic fact. Here is a proof:

(i)=(ii) Choose complements X; of ker A in X und Y; of imA in Y.

Then A; = A|x, : X1 — im A is an isomorphism. Denote by Px,, Pxer 4,
Py, , Py 4 the associated projections onto the spaces in the subscript along
the complementary space. For L = Al_IPim 4 = R we obtain

LA = Px,=1—FPyera € I—l-]:(X), and
AR = Pma=1—-Py, €+ F(F),
where F(-) here denotes the finite rank operators. Note that Py, 4 is con-
tinuous, since im A is closed.
(ii)=(i) For z € ker A C ker LA we have 0 = LAx = = — Fjz, hence
dim ker A < dim im F; < co. Moreover,
Y =imYs +im(I — Fy) = im F5 + im AR.

Asim AR C im A, the codimension of im A is finite.
This proves that (i) < (ii). Before proving that (i) < (iii) let us note a
consequence:

2.6. Lemma. Let A € L(X,Y) be a Fredholm operator. Then A+ F is a
Fredholm operator for each F' € F(X,Y)) and ind(A + F) = ind A.

We will see later that the statement also holds for F' compact.

Proof. The equivalence of (i) and (ii) in Theorem 2.5 shows that A+ F'is a
Fredholm operator. In fact, if L is a Fredholm inverse for A, then also for
A+ F.
Now first let X =Y and A = I. Decompose X = X1 @ (ker FNim F') &

Xo @ X35 = X1 @ X4, where

X1 ® (ker FNIimF) = kerF;

(ker FNImF) & Xy = imF;

(kerFﬁimF) @ X @X3 = Xy4.
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Write T'= I + F. We then have
_ im F<X
X, " x v Fx, < Xy
On Xo@® X3, which is a complement to ker F', F' is injective, so dim Xo® X3 =
dimim F' < oo. Hence also X4 is finite dimensional and T-invariant. On X7,
T = I. On the finite dimensional space X4 we have dimker T + dimim T =
dim X4, and so

dimkerT' = dimker T'|x, = codimim 7T'|x, = codimim 7.

Next let F' € F(X,Y)and A € £(X,Y) be an arbitrary Fredholm operator
and choose L such that LA = I + F with F; € F(X). By what we have
shown and Lemma 2.2,

0 = ind(I+ Fy)=1ind L+ind A,
0 = ind(/+F +LF)=ind L(A+ F) = ind L +ind (A + F),
hence ind (A + F) =ind A = —ind L. O

We need further preparations for the proof of the equivalence (i) < (iii)
in Theorem 2.5. It will be shown after Lemma 2.9.

2.7. Lemma. IfK € K(X), then I — K has finite-dimensional kernel and
closed range.

Proof. On ker(I — K), K coincides with the identity. Since K is compact,
the unit ball of ker(/ — K), i.e. {z € X : ||z|| < 1,z = Kz} is relatively
compact, hence finite-dimensional by 1.6. Lemma 1.11 therefore implies
that ker(/ — K) is the image of a continuous projection, say P. Letting
X1 = ker P, we have a closed subspace of X with X = ker(I — K) @ X;; the
sum is topologically direct by Lemma 1.9. Write T'=1 — K. Let y € imT
and let (y,)n be a sequence in im 7" converging to y. Since imT' = T' X1, there
is a sequence (z,,) in X; with y,, = Tz, = z,,— Kx,. In case (x,) is bounded,
the compactness of K((xy),) implies that we can choose a subsequence (z,;)
such that (Kwy,) is convergent. Then w,,;, = y,, + Ky, is also convergent.
Let x¢ be the limit. The continuity of 7" implies that

Trg= lim Tz, = lim y,, =y.
Jj—00 7 j—oo T

Hence, in this case, y € imT'. We shall next see that the complementary case,
where (x,) is unbounded, is not possible: Assume 0 < ||z,| — co. Letting
Zp = xp/||zn| we obtain a bounded sequence, hence a subsequence (zy;)
with Kz, converging to, say, zo. Then T'z,, = Ty, /||7n; || = yn,/l|Zn,| is
a null sequence. Moreover,

lim z,. = lim (Tz,, + Kz,,) = lim Kz, = xg.

Jj—00 Jj—00 J 7 Jj—00 J
Since all Zn; are elements of X7, so is xg, for X; is closed. Now Tzg =
limTz,, = 0, so 9 € kerT' N X; = {0}. This is a contradiction, since
[[zol| = Timj o0 [[2n; | = 1. O

2.8. Riesz’ Lemma. Let X be a normed space and ¥ < X a closed
subspace. Given 0 < § < 1, there is an z € X \ Y with [|z|| =1 and

inf{||z —y|| : y € Y} > 0.
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Proof. Let g € X \'Y and d = inf{||zo — y|| : y € Y'}. Since Y is closed, d
is positive. Given an € > 0 we can find a y. € Y with d < ||zg — y:|| < d+e.
Choose € > 0 so small that d/(d +¢) > 0, and let z = (xo — y:)/||zo — yell-
Then x € X \'Y and ||z|| = 1. Moreover, for every z € Y we have y. + ||xg —
Ye|lz € Y and therefore

l = 2] =

M_ZH _wo = et llwo —wella)l o 4 o
20— ve] 7o = gl e

2.9. Lemma. [ — K is a Fredholm operator for every K € K(X).

Proof. Let T'=1 — K. It has finite dimensional kernel and closed range by
Lemma 2.7. If imT < X, then apply Riesz’ lemma to find a y; € X \ imT
with ||y1]] = 1 and inf{|ly — w1|| : ¥ € imT} > 1/2. Since span{y;} is
one-dimensional, M; :=imT @ span{y; } is topologically direct and a closed
subspace of X by Lemma 1.10. If im T had infinite codimension, we could
find a sequence (y,) with ||y,| = 1 and closed subspaces

M, =imT @ span{y:} & - - @ span{y,}
satisfying inf{ ||y, — y|| : vy € M,,—1} > 1/2. We then had, for j > k,
1Ky — Kyell = lly; — Ty — ye + Tyl = 1/2,

since Ty; + yr, — Tyr, € My. This is a contradiction to the compactness of
K. O

We are now ready to show the remaining part of Theorem 2.5, namely that
A € L(X,Y) is a Fredholm operator if and only if it is invertible modulo
compact operators. Since we know already that the Fredholm property is
equivalent to being invertible modulo finite rank operators, we only have to
show that invertibility modulo compacts implies the Fredholm property.

By Lemma 2.9, I + K; and I + K3 in Theorem 2.5(iii) are Fredholm
operators. Applying the equivalence already proven, we find Ly € L(X),
Ry € L(Y) such that

LiILA-T = Li(I+K))—1IeF(X)and
ARR, —1 = (I+4 KRy —1¢eF(Y).
Now the equivalence (i) < (ii) implies that A is a Fredholm operator.

In order to see that we may choose the same operator for both L and R,
we check that L — R € K(Y, X):

L=LI=LAR—-Ky) = (LA)R— LKy = (I + K1)R— LKs = R
modulo compact operators.

2.10. Remark. Let 7 : £(X) — L£(X)/K(X) be the canonical epimor-
phism. Theorem 2.5 shows that A € £(X) is a Fredholm operator if and
only if m(A) is invertible in the so-called Calkin algebra £(X)/KC(X).
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2.11. Theorem. We denote by Fred(X,Y) the set of all Fredholm opera-
tors in L(X,Y) and by Fred,,(X,Y’) those of index n. Then Fred, (X,Y) is
open in L(X,Y). In particular,
ind : Fred(X,Y) — Z
is continuous with respect to the topology of L(X,Y') and therefore constant
on the connected components.
Proof. Let A € Fred,(X,Y) and
d=sup{|L|':LA-1€ F(X),AL-I€F(Y)} >0.
We shall see that, for each S € £(X,Y) with ||S|| < d, we have A+ S €
Fred,(X,Y): Choose L € L(Y,X) such that LA -1 = F; € F(X) and
|S|| < 1/||L||. Since |[LS| < 1,1 + LS is invertible by Theorem 1.1, so
L(A+S) =1+ LS+ F; is Fredholm of index zero by Lemma 2.6. Hence we
can find L; € £(X) with
LiL(A+S)—1I e F(X).
By the same argument, (A + S)L is a Fredholm operator, so we find R; €
L(Y) with
(A+ S)LRy — I € F(Y).
This shows that A 4+ S is a Fredholm operator. We also have
0 = indLA=indL +ind A, and
0 = indL(A+S)=ind L +ind(A+S5),
soindA=ind A+ S. O
2.12. Corollary. ind(I + K) =0 whenever K € K(X).

Proof. The mapping « : [0,1] — Fred(X) given by a(s) = I + sK is contin-
uous in the topology of £(X). The index therefore is constant. Since it is
zero for s = 0, we get the assertion. U

2.13. Lemma. IfAin £(X,Y) is a Fredholm operator and K € K(X,Y),
then A+ K is a Fredholm operator, and ind(A + K) = ind A.

Proof. Let L be a Fredholm inverse for A modulo compact operators. Then
L is also a Fredholm inverse for A+ K. Hence A+ K is a Fredholm operator.
By Corollary 2.12

ind LA=0=ind L(A+ K)
and ind A = —ind L = ind(A + K). O

There exists a considerable extension of Lemma 2.13 due to H"ormander,
see [11, Theorem 19.1.10] for details.

2.14. Theorem. Let T be a compact space and A; € L(X,Y), By €
L(Y,X), t € T, be strongly continuous as functions of t.> Suppose that the
operators

Kl,t = AtBt — I and K27t = BtAt -1
are uniformly compact in the sense that the sets
My ={Knu:ueV,|ul|<1,teT}and My ={Kyu:ue X, |ul| <1,teT}

2ie forx e X, the maps t — Aiu and t — Bu are continuous
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have compact closure in Y and X, respectively.

Then A; and B; are Fredholm operators, dimker A; and dimker B; are
upper semicontinuous,® and ind A; = — ind B; are locally constant on T. In
particular, they are constant, if T is connected.

If we consider Hilbert spaces, then we get more results:
2.15. Lemma. Let H be an infinite-dimensional Hilbert space. Then
ind : Fred (H) — Z
is surjective.

Proof. We have H ~ [?(N) @ I2(T"), where I is a suitable index set. Simi-
larly as in Example 2.2 define the right and left shift operators Sp and Sy,
respectively, by

Sr((z1,22,...)®Yy) = ((0,z1,22,...)BY)
Sp((@y,za,..) @y) = ((w2,23,...) DY)
for x = (z1,72,...) € [3(N) and y € [?(T'). Then ind Sg = —1 and ind S}, =
1. (]

According to Theorem 2.11 the index is constant on the connected com-
ponents of Fred(X). In the Hilbert space situation, the index even classifies
the components of the set of all Fredholm operators.

2.16. Theorem. If H is a complex Hilbert space, then Fred,,(H) is arcwise
connected.

The proof uses:

2.17. Theorem. Let H be a complex Hilbert space. Then the group
L(H)~! of invertible elements in H is arcwise connected.

Proof of Theorem 2.16. In view of Lemma 2.15 it is sufficient to show that any
Fredholm operator A of index zero can be connected to I by a continuous
path. Indeed, choose orthogonal complements X of kerA and Y of im A.
Then A : X — im A is invertible, and there is an isomorphism T" : ker A — Y.
Clearly, A+ T is invertible. By Theorem 2.17 it can be connected to I by a
continuous path in £(H)~! C Fredo(H). For 0 <t < 1 on the other hand,
t — A+1tT defines a continuous path in Fredo(H ), since T" has finite rank. <

2.18. Remark. For a Banach space X it was shown by Douady [7] that, in
general, Fredy(X) is not connected. A particular example is X = ¢o(N) &
I2(N). Note that, a fortiori, £(X)~! then is not connected.

3A function f T — R is upper semi-continuous at to, if for every ¢ > 0 there exists a
neighborhood U of ¢ such that f(t) < f(to) + € for all t € U



