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2. Fredholm Operators

In the sequel, let X and Y be Banach spaces over R or (better) C.

2.1. Definition. An operator A in L(X,Y ), the space of continuous linear
operators from X to Y , is a Fredholm1 operator, if

dimkerA < 1 and codim imA := dim(Y/ imA) < 1.

In this case, one calls

indA = dimkerA� codim imA 2 Z

the index of A. The quotient Y/ imA is called the cokernel of A.

Of course, the notion of Fredholm operator makes sense for arbitrary vec-
tor spaces X and Y , and many properties hold also in this general situation.
The most useful results, however, namely Theorems 2.5 and 2.14, require
Banach and Hilbert spaces, respectively.

The Fredholm property can be seen as a substitute for invertibility. If A is
a Fredholm operator, the equation Au = f has solutions whenever f belongs
to a subspace of Y which has a finite-dimensional complement, while the
space of solutions is at most finite-dimensional. Clearly, an invertible oper-
ator has index zero; not every operator of index zero, however, is invertible.

The notion of a Fredholm operator is only of interest for infinite-dimensional
spaces X and Y . In fact, the isomorphism theorem tells us that X/ kerA ⇠=

imA. If both X and Y have finite dimension, then

dimX � dimkerA = dim imA = dimY � codim imA

and therefore
indA = dimX � dimY.

Hence, in this case, every operator A is a Fredholm operator and the index
is actually independent of A.

2.2. Example. Let X = Y = `2(N) be the space of square integrable
sequences

`2(N) = {x = (x1, x2, . . .) : xj 2 C,
X

|xj |
2 < 1}.

We define the operators SL and SR in L(`2(N)), which shift the sequences
to the left and the right, respectively, by

SL(x1, x2, x3, . . .) = (x2, x3, . . .) and SR(x1, x2, . . .) = (0, x1, x2, . . .).

Then SL is surjective and has one-dimensional kernel so that indSL = 1.
The operator SR is injective, and its range has codimension 1. Therefore
indSR = �1.

An important analytic fact:

2.3. Lemma. A Fredholm operator has closed range.

1
named after Erik Ivar Fredholm, 1866-1927. In fact, it would be more appropriate to

name them (as it its common in the Russian literature) after Fritz Noether, 1884-1941.
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Proof. Let A be a Fredholm operator and let ⇡ : X ! eX := X/kerA be
the quotient map. Endow eX with the quotient norm. Then A induces the
injective mapping A0

: eX ! Y with range imA. Next choose an algebraic
complement Y1 of imA, and form the exterior sum Z = eX � Y1. Both eX
and Y1 are closed subspaces of Z, since Z carries the topology of the exterior
sum. Y1 is finite-dimensional, and X̃ is a Banach space, so Z is a Banach
space. The mapping eA : Z ! Y defined by

eA(ex, y) = A0ex+ y, ex 2 eX, y 2 Y1,

is continuous and bijective. The inverse then is continuous by Theorem 1.3.
This in turn shows that imA = eA( eX) = [ eA�1

]
�1

( eX) is closed. ⇤
The index behaves well under compositions:

2.4. Lemma. Let X,Y, and Z be Banach spaces. If A 2 L(X,Y ) and
B 2 L(Y, Z) both are Fredholm operators, then so is the composition BA,
and

ind(BA) = indB + indA.

Proof. The proof, below, is purely algebraic and works on general vector
spaces. Choose X1  X with X = kerA�X1 und Y1, Y2, Y3  Y such that

Y = imA+ kerB � Y3;(1)
kerB = (imA \ kerB)� Y2;

imA = (imA \ kerB)� Y1.

Then
Y = Y1 � (imA \ kerB)� Y2 � Y3.

Next choose Z1  Z with
Z = B(Y1)�B(Y3)� Z1.

Note: For x1 2 Y1 and x3 2 Y3 with Bx1 = Bx3 we have x3 � x1 2 kerB,
thus x3 2 Y1 + kerB ✓ imA+ kerB, hence x3 = 0 by (1).

Moreover, dim(imA \ kerB) = dim kerB � dim Y2.
B|Y1�Y3 is injective, and therefore
dim B(Y3) = dim Y3 = dim Y2 � Y3 � dim Y2 = codim imA� dim Y2.

Furthermore imBA = B(Y1), kerBA = kerA� {x 2 X1 : Ax 2 kerB}. We
conclude

indBA = dim kerBA� codim imBA

= dim kerA+ dim imA \ kerB � (dim B(Y3) + dim Z1)

= dim kerA+ dim kerB � dim Y2 � codim imA+ dim Y2

� codim imB

= indB + indA.

⇤
In connection with Example 2.2 we see that there exist Fredholm operators

of every index on `2(N).
The following theorem underlines the point of view that Fredholm opera-

tors are ‘almost’ invertible. They have inverses up to finite rank operators.
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What is remarkable is that it is sufficient to find inverses up to compact
operators to guarantee the Fredholm property. This is Atkinson’s theorem.

2.5. Theorem. For A 2 L(X,Y ) the following are equivalent:
(i) A is a Fredholm operator.
(ii) There exist L,R 2 L(Y,X) such that

LA� I = F1 and AR� I = F2

are finite rank operators in the respective spaces.
(iii) There exist L̃, R̃ 2 L(Y,X) such that

L̃A� I = K1 and AR̃� I = K2

are compact operators in the respective spaces.
In case one of the conditions holds, we can choose L = R and L̃ = R̃,
respectively.

We call L and L̃ Fredholm inverses to A. We then see that L and L̃ also
are Fredholm operators. The same applies to R and R1.

The equivalence of (i) and (ii) is a purely algebraic fact. Here is a proof:
(i))(ii) Choose complements X1 of kerA in X und Y1 of imA in Y .
Then A1 = A|X1 : X1 ! imA is an isomorphism. Denote by PX1 , PkerA,

PY1 , PimA the associated projections onto the spaces in the subscript along
the complementary space. For L = A�1

1 PimA = R we obtain

LA = PX1 = I � PkerA 2 I + F(X), and
AR = PimA = I � PY1 2 I + F(F ),

where F(·) here denotes the finite rank operators. Note that PimA is con-
tinuous, since imA is closed.

(ii))(i) For x 2 kerA ✓ kerLA we have 0 = LAx = x � F1x, hence
dim kerA  dim imF1 < 1. Moreover,

Y = imY2 + im(I � F2) = imF2 + imAR.

As imAR ✓ imA, the codimension of imA is finite.
This proves that (i) , (ii). Before proving that (i) , (iii) let us note a

consequence:

2.6. Lemma. Let A 2 L(X,Y ) be a Fredholm operator. Then A + F is a
Fredholm operator for each F 2 F(X,Y )) and ind(A+ F ) = indA.

We will see later that the statement also holds for F compact.

Proof. The equivalence of (i) and (ii) in Theorem 2.5 shows that A+ F is a
Fredholm operator. In fact, if L is a Fredholm inverse for A, then also for
A+ F .

Now first let X = Y and A = I. Decompose X = X1 � (kerF \ imF )�

X2 �X3 = X1 �X4, where

X1 � (kerF \ imF ) = kerF ;

(kerF \ imF )�X2 = imF ;

(kerF \ imF )�X2 �X3 =: X4.
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Write T = I + F . We then have

TX4
T=I+F
= X4 + FX4

imFX4

 X4.

On X2�X3, which is a complement to kerF , F is injective, so dimX2�X3 =

dim imF < 1. Hence also X4 is finite dimensional and T -invariant. On X1,
T = I. On the finite dimensional space X4 we have dimkerT + dim imT =

dimX4, and so
dimkerT = dimkerT |X4 = codim imT |X4 = codim imT.

Next let F 2 F(X,Y ) and A 2 L(X,Y ) be an arbitrary Fredholm operator
and choose L such that LA = I + F1 with F1 2 F(X). By what we have
shown and Lemma 2.2,

0 = ind (I + F1) = ind L+ ind A,

0 = ind (I + F1 + LF ) = ind L(A+ F ) = ind L+ ind (A+ F ),

hence ind (A+ F ) = ind A = � indL. ⇤
We need further preparations for the proof of the equivalence (i) , (iii)

in Theorem 2.5. It will be shown after Lemma 2.9.

2.7. Lemma. If K 2 K(X), then I �K has finite-dimensional kernel and
closed range.

Proof. On ker(I �K), K coincides with the identity. Since K is compact,
the unit ball of ker(I � K), i.e. {x 2 X : kxk < 1, x = Kx} is relatively
compact, hence finite-dimensional by 1.6. Lemma 1.11 therefore implies
that ker(I � K) is the image of a continuous projection, say P . Letting
X1 = kerP , we have a closed subspace of X with X = ker(I �K)�X1; the
sum is topologically direct by Lemma 1.9. Write T = I �K. Let y 2 imT
and let (yn)n be a sequence in imT converging to y. Since imT = TX1, there
is a sequence (xn) in X1 with yn = Txn = xn�Kxn. In case (xn) is bounded,
the compactness of K((xn)n) implies that we can choose a subsequence (xnj )

such that (Kxnj ) is convergent. Then xnj = ynj +Kxnj is also convergent.
Let x0 be the limit. The continuity of T implies that

Tx0 = lim
j!1

Txnj = lim
j!1

ynj = y.

Hence, in this case, y 2 imT . We shall next see that the complementary case,
where (xn) is unbounded, is not possible: Assume 0 < kxnk ! 1. Letting
zn = xn/kxnk we obtain a bounded sequence, hence a subsequence (znj)
with Kznj converging to, say, x0. Then Tznj = Txnj/kxnjk = ynj/kxnjk is
a null sequence. Moreover,

lim
j!1

znj = lim
j!1

(Tznj +Kznj ) = lim
j!1

Kznj = x0.

Since all znj are elements of X1, so is x0, for X1 is closed. Now Tx0 =

limTznj = 0, so x0 2 kerT \ X1 = {0}. This is a contradiction, since
kx0k = limj!1 kznjk = 1. ⇤
2.8. Riesz’ Lemma. Let X be a normed space and Y < X a closed
subspace. Given 0 < � < 1, there is an x 2 X \ Y with kxk = 1 and

inf{kx� yk : y 2 Y } � �.
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Proof. Let x0 2 X \ Y and d = inf{kx0 � yk : y 2 Y }. Since Y is closed, d
is positive. Given an " > 0 we can find a y" 2 Y with d  kx0� y"k  d+ ".
Choose " > 0 so small that d/(d+ ") � �, and let x = (x0 � y")/kx0 � y"k.
Then x 2 X \Y and kxk = 1. Moreover, for every z 2 Y we have y"+ kx0�
y"kz 2 Y and therefore

kx� zk =

����
x0 � y"
kx0 � y"k

� z

���� =
kx0 � (y" + kx0 � y"kz)k

kx0 � y"k
�

d

d+ "
� �.

⇤

2.9. Lemma. I �K is a Fredholm operator for every K 2 K(X).

Proof. Let T = I �K. It has finite dimensional kernel and closed range by
Lemma 2.7. If imT < X, then apply Riesz’ lemma to find a y1 2 X \ imT
with ky1k = 1 and inf{ky � y1k : y 2 imT} � 1/2. Since span{y1} is
one-dimensional, M1 := imT � span{y1} is topologically direct and a closed
subspace of X by Lemma 1.10. If imT had infinite codimension, we could
find a sequence (yn) with kynk = 1 and closed subspaces

Mn = imT � span{y1}� · · ·� span{yn}

satisfying inf{kyn � yk : y 2 Mn�1} � 1/2. We then had, for j > k,

kKyj �Kykk = kyj � Tyj � yk + Tykk � 1/2,

since Tyj + yk � Tyk 2 Mk. This is a contradiction to the compactness of
K. ⇤

We are now ready to show the remaining part of Theorem 2.5, namely that
A 2 L(X,Y ) is a Fredholm operator if and only if it is invertible modulo
compact operators. Since we know already that the Fredholm property is
equivalent to being invertible modulo finite rank operators, we only have to
show that invertibility modulo compacts implies the Fredholm property.

By Lemma 2.9, I + K1 and I + K2 in Theorem 2.5(iii) are Fredholm
operators. Applying the equivalence already proven, we find L1 2 L(X),
R1 2 L(Y ) such that

L1L̃A� I = L1(I +K1)� I 2 F(X) and
AR̃R1 � I = (I +K2)R1 � I 2 F(Y ).

Now the equivalence (i) , (ii) implies that A is a Fredholm operator.
In order to see that we may choose the same operator for both L̃ and R̃,

we check that L̃� R̃ 2 K(Y,X):

L̃ = L̃I = L̃(AR̃�K2) = (L̃A)R̃� L̃K2 = (I +K1)R̃� L̃K2 ⌘ R̃

modulo compact operators.

2.10. Remark. Let ⇡ : L(X) ! L(X)/K(X) be the canonical epimor-
phism. Theorem 2.5 shows that A 2 L(X) is a Fredholm operator if and
only if ⇡(A) is invertible in the so-called Calkin algebra L(X)/K(X).
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2.11. Theorem. We denote by Fred(X,Y ) the set of all Fredholm opera-
tors in L(X,Y ) and by Fredn(X,Y ) those of index n. Then Fredn(X,Y ) is
open in L(X,Y ). In particular,

ind : Fred(X,Y ) ! Z
is continuous with respect to the topology of L(X,Y ) and therefore constant
on the connected components.

Proof. Let A 2 Fredn(X,Y ) and
d = sup

�
kLk�1

: LA� I 2 F(X), AL� I 2 F(Y )
 
> 0.

We shall see that, for each S 2 L(X,Y ) with kSk < d, we have A + S 2

Fredn(X,Y ): Choose L 2 L(Y,X) such that LA � I = F1 2 F(X) and
kSk < 1/kLk. Since kLSk < 1, I + LS is invertible by Theorem 1.1, so
L(A+S) = I +LS+F1 is Fredholm of index zero by Lemma 2.6. Hence we
can find L1 2 L(X) with

L1L(A+ S)� I 2 F(X).

By the same argument, (A + S)L is a Fredholm operator, so we find R1 2

L(Y ) with
(A+ S)LR1 � I 2 F(Y ).

This shows that A+ S is a Fredholm operator. We also have
0 = indLA = indL+ indA, and
0 = indL(A+ S) = indL+ ind(A+ S),

so indA = indA+ S. ⇤
2.12. Corollary. ind(I +K) = 0 whenever K 2 K(X).

Proof. The mapping ↵ : [0, 1] ! Fred(X) given by ↵(s) = I + sK is contin-
uous in the topology of L(X). The index therefore is constant. Since it is
zero for s = 0, we get the assertion. ⇤
2.13. Lemma. If A in L(X,Y ) is a Fredholm operator and K 2 K(X,Y ),
then A+K is a Fredholm operator, and ind(A+K) = indA.

Proof. Let L be a Fredholm inverse for A modulo compact operators. Then
L is also a Fredholm inverse for A+K. Hence A+K is a Fredholm operator.
By Corollary 2.12

indLA = 0 = indL(A+K)

and indA = � indL = ind(A+K). ⇤
There exists a considerable extension of Lemma 2.13 due to H"̈ormander,

see [11, Theorem 19.1.10] for details.

2.14. Theorem. Let T be a compact space and At 2 L(X,Y ), Bt 2

L(Y,X), t 2 T , be strongly continuous as functions of t.2 Suppose that the
operators

K1,t = AtBt � I and K2,t = BtAt � I

are uniformly compact in the sense that the sets
M1 = {K1tu : u 2 Y, kuk  1, t 2 T } and M2 = {K2tu : u 2 X, kuk  1, t 2 T }

2
i.e. for x 2 X, the maps t 7! Atu and t 7! Btu are continuous
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have compact closure in Y and X, respectively.
Then At and Bt are Fredholm operators, dimkerAt and dimkerBt are

upper semicontinuous,3 and indAt = � indBt are locally constant on T . In
particular, they are constant, if T is connected.

If we consider Hilbert spaces, then we get more results:

2.15. Lemma. Let H be an infinite-dimensional Hilbert space. Then
ind : Fred (H) ! Z

is surjective.

Proof. We have H ' l2(N) � l2(�), where � is a suitable index set. Simi-
larly as in Example 2.2 define the right and left shift operators SR and SL,
respectively, by

SR((x1, x2, . . .)� y) = ((0, x1, x2, . . .)� y)

SL((x1, x2, . . .)� y) = ((x2, x3, . . .)� y)

for x = (x1, x2, . . .) 2 l2(N) and y 2 l2(�). Then indSR = �1 and indSL =

1. ⇤

According to Theorem 2.11 the index is constant on the connected com-
ponents of Fred(X). In the Hilbert space situation, the index even classifies
the components of the set of all Fredholm operators.

2.16. Theorem. If H is a complex Hilbert space, then Fredn(H) is arcwise
connected.

The proof uses:

2.17. Theorem. Let H be a complex Hilbert space. Then the group
L(H)

�1 of invertible elements in H is arcwise connected.

Proof of Theorem 2.16. In view of Lemma 2.15 it is sufficient to show that any
Fredholm operator A of index zero can be connected to I by a continuous
path. Indeed, choose orthogonal complements X of kerA and Y of imA.
Then A : X ! imA is invertible, and there is an isomorphism T : kerA ! Y .
Clearly, A+ T is invertible. By Theorem 2.17 it can be connected to I by a
continuous path in L(H)

�1
✓ Fred0(H). For 0  t  1 on the other hand,

t 7! A+ tT defines a continuous path in Fred0(H), since T has finite rank. C
2.18. Remark. For a Banach space X it was shown by Douady [7] that, in
general, Fred0(X) is not connected. A particular example is X = c0(N) �
l2(N). Note that, a fortiori, L(X)

�1 then is not connected.

3
A function f : T ! R is upper semi-continuous at t0, if for every ✏ > 0 there exists a

neighborhood U of t0 such that f(t)  f(t0) + ✏ for all t 2 U


