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10. THE COHOMOLOGICAL INDEX FORMULA

10.1. Outline. We consider a class z € K.(T'M) for the compact manifold
M. Our task is to compute ind;  in cohomological terms. We recall that
one starts with the embeddings of M into R¥ for some large K.

, L
indyz : K.(TM) N K.(TN) £ KC(TRK) (Ji> 7

is given by the Thom isomorphism ¢, associated with the embedding of M
into the normal bundle N to M in RX, the identification of TN with an
open neighborhood of TM in T'N, the extension map F' and the inverse of
the Thom isomorphism associated with the embedding j : {0} < R,

We therefore consider the diagram

K.(TM) —'— KJTN) —X» K.@®RK) 2~ K(T0)

ChJ{ chl chl chl
Hgven(TM) Z* ) HCGUETL (TN) F* ) Hgven (TRK) J* HgUETL (0).
with the Chern character and the cohomology maps 4., Fix and j, correspond-

ing to 41, F and 7.

As a preliminary result we note:

10.2. Lemma. Let X be a compact space and E a vector bundle over X
with projection p : E — X and total space N. Denote by E the lift of E to
N.

Recall that the Bott generator g is given by the class of

ﬁE — (Aeven(E*)’ AOdd(E*), b(Z))
in K.(N), where b(z) = (z) + £*(2).
We have
(1) ch B = ch(A®*"(E*)) — ch(A°™(E*))

—w

= det@det = deto Td™1(E).

w
Here & is the normalized curvature form associated with a special connection
which we will construct in the proof.

Moreover, we obtain

pich g = Td ' (E).

Proof. Let O be a hermitian connection on E and I' the connection form in
local coordinates. This defines a connection on the lifting F of E to N with
the same connection form T', the so-called lifting of . We also denote it by
d. The bundle F has the section v = z/|z|, defined for z # 0. Here z is the
fiber variable in F. R

We next define a connection 9 for E by letting

ou = Au + p(—dv(u,v) + viu, ) + (dv, v)u).

It satisfies dv = 0 for |z| > 1. Differentiating this identity we conclude that
Qv = 0, so that also detw = 0 for |z|] > 1. In particular, the m-th Chern
form yields a cohomology class in H2™(N).
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It can be shown that p. detw = 1, so that det 0 = Ug, the Thom genera-
tor.

Now for the computation of p,ch 8. With the above connection 9 asso-
ciate connections on E* and the exterior powers A¥(E*). From the fact that
Ov = 0 one obtains 0b(z) = 0 (CHK). By definition, we therefore have

ch B = tr(e®0) — tr(e*),
where @ and w; are the normalized curvatures associates with 8 in A (E*)
and A°%(E*), respectively. From Lemma 7.22(c) we obtain (1).

We know already that det @ is a form with compact support on N which

defines the generator Ug € H>™ (N) since p(det @) = 1.

comp

In the factor det l_gfw we can replace @ by w, the normalized curvature
associated with 0 without changing the cohomology class H(N) nor the
class of all the products in Heomp(IN). Since the form w does not contain the
differentials dz/ and dz? (in fact, by the computation in 7.22, det(Tp())
is precisely the Todd class for F) and p.(det@) = 1, integration over the
fibers yields

p«(ch Bp) = Td™H(E).
O
10.3. Proposition. Let E be a complex vector bundle of rank n over the
space X, i : X — FE the embedding of X into E as the zero section, i1 and

i the Thom isomorphisms in K-theory and cohomology, respectively, and
p: E — X the base point projection. Consider the diagram

K(X) —% K.(E)

al al

Heven(X) —s Heven(E),
Then, for x € K.(X),
(i)' chiy(z) = Td(E)"! Achz.

Proof. Thom’s isomorphism theorem 8.10 states that ijz = Bg p'z is given
by multiplication of the class of the pull-back with the Bott generator Sg.
Then

(E;) chi(z) = (ix)*l ch(Bg p!a:)
8.8
(
(

= (i)t (ch BE Achp'z) (ch is module homomorphism)
(1)~ ch Bg) A chz) (iych = chp')

=" Td(E)™'Achz.

10.4. Corollary. Consider the scrunch map
q:TRE =2 RE g RE = CK - {0}.
We consider CK as a complex vector bundle over {0} and let j < CK be

the inclusion map. Apply Proposition 10.3 for a class e € K(0). Then
(7))~ ch(jie) = TA(CK)~tche. Now CX is a trivial bundle. The curvature
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is zero and therefore Td(CK) = 1 = Td(CK)~!. Moreover, (j)~! = q is
simply integration, and the Chern character ch : K(0) — H(0) is the map
Z 3z z. Foru= jie € K.(CK) we therefore find

/ chu =e considered as an integer.
TRE

10.5. Corollary. Let V' be a real vector bundle over M, p : V. — M the
projection. Consider the induced bundle TV over TM. Here, we have a
natural isomorphism TV = p*V @& p*V (first term in the base, second in the
fiber). Therefore TV naturally has a complex structure as a vector bundle
over T'M , and we can identify it with the complex bundle V&®C. We therefore
can apply Proposition 10.3 with T M in the role of X and TV =2V ® C in
the role of E and obtain

(i)t ch(iyr) = TA(V @ C) 'cha, x € K.(TM).

Now we recall from the proof of the Todd isomorphism Theorem 8.10 that
(iy)~! = pi and that p, is integration over the fiber. Integrating over all of
TV we obtain

/TV ch(iiz) = /TMp! ch(iyz) = /TM Td~\(V & C) cha.

10.6. Proof of the cohomological formula. We recall the construction
of the map fi associated with the embedding f : X — RX: It is F o4, i.e.
the Thom isomorphism 4 : K.(T'M) — K (T'N) for the normal bundle N to
the embedding of X into RX followed by the inclusion F, where now T'N is
identified with an open neighborhood of X in TR®. The fact that the Chern
character behaves naturally under the embedding TN < TRX shows that

(nLéwfmﬁ@:iéwpmpo@@:iANmuw% v € Ko(TM).

According to Corollary 10.5, with N in the role of V,

hT) = -1 chz.
@) AwdmwyiAMTd(N®C)h

We next note that TM @ N is a trivial bundle over X. The Todd class of
a trivial bundle is 1, since the curvature is zero. Since the Todd class is
multiplicative, we conclude that

Td YN ® C) = Td(TM ® C) =: Td(M),
so that the right hand side of (2) equals

(3) / Td(M)chz.
™
Now we apply this to the class z = [o(P)] = [(7*E", 7*E', 0)] in K.(TM)
associated with a pseudodifferential operator
P:C®(M,E") — C>(M,E").

Its analytic index is ind P. The topological index is (see the diagram in 10.1)
indt O(jg)fl o f!.
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We can then apply Corollary 10.4 for the case, where jie = fix; and
combine it with the above computation and the various definitions to see

that
indP:e:/ ch jie
TRE

e [ ) B [ e
TRK ™

- / Td(M) chlo(P))].
TM

10.7. Corollary. On an odd-dimensional compact manifold, the index of
every elliptic differential operator is zero.

Proof. Consider the diffeomorphism ¢ : TM — TM given by (x,v) —
(z,—v). If the dimension of M is odd, then ¢ changes the orientation.

If P is an elliptic differential operator of order m, then the principal
symbol o(P) is an m-homogeneous function, and therefore o(P)(z,—§) =
(=1)™P(x,§). Hence c*o(P) = (—1)™o(P). Since o(P) and o(P)(-,—-) are
homotopic, e.g. by o(t, P) = "¢ (P). Reducing the order to zero results in
multiplying the function o(P)(x,§) by a strictly positive, —m-homogeneous
factor, say A(w,&). It is then clear that the triples (7*E% n*El a(P)/\)
and (7*E%, 7*E', —o(P)/A) define the same class in K-theory, and therefore
(note that the Todd class only depends on the z-variables and therefore does
not feel the action of ¢)

mdP — / ch([o(P)]) Td(X)
TX
_ / ¢ (ch([o(P)]) TA(X))
c*TX

= — / (ch([o(P)]) Td(X)) change in orientation; invariance of K-class
TX

= —indP
O
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