10. The Cohomological Index Formula

10.1. Outline. We consider a class $x \in K_{c}(T M)$ for the compact manifold M. Our task is to compute $\operatorname{ind}_{t} x$ in cohomological terms. We recall that one starts with the embeddings of M into \mathbb{R}^{K} for some large K.

$$
\operatorname{ind}_{t} x: K_{c}(T M) \xrightarrow{i_{!}} K_{c}(T N) \xrightarrow{F} K_{c}\left(T \mathbb{R}^{K}\right) \xrightarrow{\left(j_{!}\right)^{-1}} \mathbb{Z}
$$

is given by the Thom isomorphism $i_{\text {! }}$ associated with the embedding of M into the normal bundle N to M in \mathbb{R}^{K}, the identification of $T N$ with an open neighborhood of $T M$ in $T N$, the extension map F and the inverse of the Thom isomorphism associated with the embedding $j:\{0\} \hookrightarrow \mathbb{R}^{K}$.

We therefore consider the diagram

with the Chern character and the cohomology maps i_{*}, F_{*} and j_{*} corresponding to $i_{!}, F$ and $j_{!}$.

As a preliminary result we note:
10.2. Lemma. Let X be a compact space and E a vector bundle over X with projection $p: E \rightarrow X$ and total space N. Denote by \tilde{E} the lift of E to N.

Recall that the Bott generator β_{E} is given by the class of

$$
\beta_{E}=\left(\Lambda^{\text {even }}\left(E^{*}\right), \Lambda^{\text {odd }}\left(E^{*}\right), b(z)\right)
$$

in $K_{c}(N)$, where $b(z)=\varepsilon(z)+\varepsilon^{*}(z)$.
We have

$$
\begin{align*}
& \operatorname{ch} \beta_{E}=\operatorname{ch}\left(\Lambda^{\text {even }}\left(E^{*}\right)\right)-\operatorname{ch}\left(\Lambda^{\text {odd }}\left(E^{*}\right)\right) \tag{1}\\
& \quad=\operatorname{det} \tilde{\omega} \operatorname{det} \frac{1-e^{-\tilde{\omega}}}{\tilde{\omega}}=\operatorname{det} \tilde{\omega} \operatorname{Td}^{-1}(\tilde{E})
\end{align*}
$$

Here $\tilde{\omega}$ is the normalized curvature form associated with a special connection which we will construct in the proof.

Moreover, we obtain

$$
p_{!} \operatorname{ch} \beta_{E}=\operatorname{Td}^{-1}(E)
$$

Proof. Let ∂ be a hermitian connection on E and Γ the connection form in local coordinates. This defines a connection on the lifting \tilde{E} of E to N with the same connection form Γ, the so-called lifting of ∂. We also denote it by ∂. The bundle \tilde{E} has the section $\nu=z /|z|$, defined for $z \neq 0$. Here z is the fiber variable in E.

We next define a connection $\tilde{\partial}$ for \tilde{E} by letting

$$
\tilde{\partial} u=\partial u+\rho(-\partial \nu\langle u, \nu\rangle+\nu\langle u, \partial \nu\rangle+\langle\partial \nu, \nu\rangle u)
$$

It satisfies $\tilde{\partial} \nu=0$ for $|z| \geq 1$. Differentiating this identity we conclude that $\tilde{\Omega} \nu=0$, so that also $\operatorname{det} \tilde{\omega}=0$ for $|z| \geq 1$. In particular, the m-th Chern form yields a cohomology class in $H_{c}^{2 m}(N)$.

It can be shown that $p_{*} \operatorname{det} \tilde{\omega}=1$, so that $\operatorname{det} \tilde{\omega}=U_{E}$, the Thom generator.

Now for the computation of $p_{!} \operatorname{ch} \beta_{E}$. With the above connection $\tilde{\partial}$ associate connections on E^{*} and the exterior powers $\Lambda^{k}\left(E^{*}\right)$. From the fact that $\tilde{\partial} \nu=0$ one obtains $\tilde{\partial} b(z)=0$ (CHK). By definition, we therefore have

$$
\operatorname{ch} \beta_{E}=\operatorname{tr}\left(e^{\tilde{\omega}_{0}}\right)-\operatorname{tr}\left(e^{\omega_{1}}\right),
$$

where $\tilde{\omega}_{0}$ and ω_{1} are the normalized curvatures associates with $\tilde{\partial}$ in $\Lambda^{\text {even }}\left(E^{*}\right)$ and $\Lambda^{\text {odd }}\left(E^{*}\right)$, respectively. From Lemma $7.22(\mathrm{c})$ we obtain (1).
We know already that $\operatorname{det} \tilde{\omega}$ is a form with compact support on N which defines the generator $U_{E} \in H_{\text {comp }}^{2 m}(N)$ since $p_{*}(\operatorname{det} \tilde{\omega})=1$.

In the factor $\operatorname{det} \frac{1-e^{-\tilde{\omega}}}{\tilde{\omega}}$ we can replace $\tilde{\omega}$ by ω, the normalized curvature associated with ∂ without changing the cohomology class $H(N)$ nor the class of all the products in $H_{\text {comp }}(N)$. Since the form ω does not contain the differentials $d z^{j}$ and $d \bar{z}^{j}$ (in fact, by the computation in $7.22, \operatorname{det}\left(\frac{\omega}{I-\exp (-\omega)}\right)$ is precisely the Todd class for E) and $p_{*}(\operatorname{det} \tilde{\omega})=1$, integration over the fibers yields

$$
p_{*}\left(\operatorname{ch} \beta_{E}\right)=\operatorname{Td}^{-1}(E) .
$$

10.3. Proposition. Let E be a complex vector bundle of rank n over the space $X, i: X \rightarrow E$ the embedding of X into E as the zero section, $i!$ and $\tilde{i}_{!}$the Thom isomorphisms in K-theory and cohomology, respectively, and $p: E \rightarrow X$ the base point projection. Consider the diagram

Then, for $x \in K_{c}(X)$,

$$
(\tilde{i}!)^{-1} \operatorname{ch} i_{!}(x)=\operatorname{Td}(E)^{-1} \wedge \operatorname{ch} x .
$$

Proof. Thom's isomorphism theorem 8.10 states that $i!x=\beta_{E} p^{!} x$ is given by multiplication of the class of the pull-back with the Bott generator β_{E}. Then

$$
\begin{array}{lll}
\left(\tilde{i}_{!}\right)^{-1} \operatorname{ch} i_{!}(x)=\left(\tilde{\tilde{i}_{!}}\right)^{-1} \operatorname{ch}\left(\beta_{E} p^{!} x\right) & \\
\stackrel{8.8}{=}\left(\tilde{i}_{!}\right)^{-1}\left(\operatorname{ch} \beta_{E} \wedge \operatorname{ch} p^{!} x\right) & (\operatorname{ch} \text { is module homomorphism) } \\
= & \left.\left.\left(\tilde{i}_{!}\right)^{-1} \operatorname{ch} \beta_{E}\right) \wedge \operatorname{ch} x\right) & \left(\tilde{i}_{!} \operatorname{ch}=\operatorname{ch} p^{!}\right) \\
\stackrel{10.2}{=} \operatorname{Td}(E)^{-1} \wedge \operatorname{ch} x . &
\end{array}
$$

10.4. Corollary. Consider the scrunch map

$$
q: T \mathbb{R}^{K} \cong \mathbb{R}^{K} \oplus \mathbb{R}^{K} \cong \mathbb{C}^{K} \rightarrow\{0\}
$$

We consider \mathbb{C}^{K} as a complex vector bundle over $\{0\}$ and let $j \hookrightarrow \mathbb{C}^{K}$ be the inclusion map. Apply Proposition 10.3 for a class $e \in K(0)$. Then $\left(\tilde{j}!^{-1} \operatorname{ch}(j!e)=\operatorname{Td}\left(\mathbb{C}^{K}\right)^{-1}\right.$ ch e. Now \mathbb{C}^{K} is a trivial bundle. The curvature
is zero and therefore $\operatorname{Td}\left(\mathbb{C}^{K}\right)=1=\operatorname{Td}\left(\mathbb{C}^{K}\right)^{-1}$. Moreover, $(\tilde{j})^{-1}=q_{\text {! }}$ is simply integration, and the Chern character ch: $K(0) \rightarrow H^{0}(0)$ is the map $\mathbb{Z} \ni z \mapsto z$. For $u=j!e \in K_{c}\left(\mathbb{C}^{K}\right)$ we therefore find

$$
\int_{T \mathbb{R}^{K}} \operatorname{ch} u=e \quad \text { considered as an integer. }
$$

10.5. Corollary. Let V be a real vector bundle over $M, p: V \rightarrow M$ the projection. Consider the induced bundle TV over TM. Here, we have a natural isomorphism $T V \cong p^{*} V \oplus p^{*} V$ (first term in the base, second in the fiber). Therefore TV naturally has a complex structure as a vector bundle over $T M$, and we can identify it with the complex bundle $V \otimes \mathbb{C}$. We therefore can apply Proposition 10.3 with $T M$ in the role of X and $T V \cong V \otimes \mathbb{C}$ in the role of E and obtain

$$
(\tilde{i}!)^{-1} \operatorname{ch}(i!x)=\operatorname{Td}(V \otimes \mathbb{C})^{-1} \operatorname{ch} x, \quad x \in K_{c}(T M) .
$$

Now we recall from the proof of the Todd isomorphism Theorem 8.10 that $\left(\tilde{i}_{!}\right)^{-1}=p_{!}$and that $p_{!}$is integration over the fiber. Integrating over all of $T V$ we obtain

$$
\int_{T V} \operatorname{ch}\left(i_{!} x\right)=\int_{T M} p_{!} \operatorname{ch}\left(i_{!} x\right)=\int_{T M} \operatorname{Td}^{-1}(V \otimes \mathbb{C}) \operatorname{ch} x .
$$

10.6. Proof of the cohomological formula. We recall the construction of the map $f_{!}$associated with the embedding $f: X \hookrightarrow \mathbb{R}^{K}$: It is $F \circ i_{!}$, i.e. the Thom isomorphism $i_{!}: K_{c}(T M) \rightarrow K_{c}(T N)$ for the normal bundle N to the embedding of X into \mathbb{R}^{K} followed by the inclusion F, where now $T N$ is identified with an open neighborhood of X in $T \mathbb{R}^{K}$. The fact that the Chern character behaves naturally under the embedding $T N \hookrightarrow T \mathbb{R}^{K}$ shows that
(1) $\int_{T \mathbb{R}^{K}} \operatorname{ch}(f!x)=\int_{T \mathbb{R}^{K}} \operatorname{ch}\left(F \circ i_{!} x\right)=\int_{T N} \operatorname{ch}(i!x), \quad x \in K_{c}(T M)$.

According to Corollary 10.5, with N in the role of V,

$$
\begin{equation*}
\int_{T N} \operatorname{ch}\left(i_{!} x\right)=\int_{T M} \operatorname{Td}^{-1}(N \otimes \mathbb{C}) \operatorname{ch} x . \tag{2}
\end{equation*}
$$

We next note that $T M \oplus N$ is a trivial bundle over X. The Todd class of a trivial bundle is 1 , since the curvature is zero. Since the Todd class is multiplicative, we conclude that

$$
\operatorname{Td}^{-1}(N \otimes \mathbb{C})=\operatorname{Td}(T M \otimes \mathbb{C})=: \operatorname{Td}(M)
$$

so that the right hand side of (2) equals

$$
\begin{equation*}
\int_{T M} \operatorname{Td}(M) \operatorname{ch} x . \tag{3}
\end{equation*}
$$

Now we apply this to the class $x=[\sigma(P)]=\left[\left(\pi^{*} E^{0}, \pi^{*} E^{1}, \sigma\right)\right]$ in $K_{c}(T M)$ associated with a pseudodifferential operator

$$
P: C^{\infty}\left(M, E^{0}\right) \rightarrow C^{\infty}\left(M, E^{1}\right) .
$$

Its analytic index is ind P. The topological index is (see the diagram in 10.1) $\operatorname{ind}_{t} \circ(j!)^{-1} \circ f_{!}$.

We can then apply Corollary 10.4 for the case, where $j!e=f_{!} x$; and combine it with the above computation and the various definitions to see that

$$
\begin{aligned}
& \text { ind } P=e=\int_{T \mathbb{R}^{K}} \operatorname{ch} j!e \\
& \stackrel{\substack{j!e=f!x}}{=} \int_{T \mathbb{R}^{K}} \operatorname{ch}\left(f_{!} x\right) \stackrel{(1),(2),(3)}{=} \int_{T M} \operatorname{Td}(M) \operatorname{ch} x \\
&=\int_{T M} \operatorname{Td}(M) \operatorname{ch}[\sigma(P)] .
\end{aligned}
$$

10.7. Corollary. On an odd-dimensional compact manifold, the index of every elliptic differential operator is zero.
Proof. Consider the diffeomorphism $c: T M \rightarrow T M$ given by $(x, v) \mapsto$ $(x,-v)$. If the dimension of M is odd, then c changes the orientation.

If P is an elliptic differential operator of order m, then the principal symbol $\sigma(P)$ is an m-homogeneous function, and therefore $\sigma(P)(x,-\xi)=$ $(-1)^{m} P(x, \xi)$. Hence $c^{*} \sigma(P)=(-1)^{m} \sigma(P)$. Since $\sigma(P)$ and $\sigma(P)(\cdot,-\cdot)$ are homotopic, e.g. by $\sigma(t, P)=e^{i \pi t} \sigma(P)$. Reducing the order to zero results in multiplying the function $\sigma(P)(x, \xi)$ by a strictly positive, $-m$-homogeneous factor, say $\lambda(x, \xi)$. It is then clear that the triples $\left(\pi^{*} E^{0}, \pi^{*} E^{1}, \sigma(P) / \lambda\right)$ and $\left(\pi^{*} E^{0}, \pi^{*} E^{1},-\sigma(P) / \lambda\right)$ define the same class in K-theory, and therefore (note that the Todd class only depends on the x-variables and therefore does not feel the action of c)

$$
\begin{aligned}
\text { ind } P & =\int_{T X} \operatorname{ch}([\sigma(P)]) \operatorname{Td}(X) \\
& =\int_{c^{*} T X} c^{*}(\operatorname{ch}([\sigma(P)]) \operatorname{Td}(X)) \\
& =-\int_{T X}(\operatorname{ch}([\sigma(P)]) \operatorname{Td}(X)) \quad \text { change in orientation; invariance of K-class } \\
& =- \text { ind } P
\end{aligned}
$$

References

[1] M. F. Atiyah. K-Theory. Lecture notes by D. W. Anderson. W. A. Benjamin, Inc., New York-Amsterdam, 1967.
[2] M. F. Atiyah and I. M. Singer. The index of elliptic operators on compact manifolds. Bull. Amer. Math. Soc. 69 (1963), 422-433.
[3] M. F. Atiyah and I. M. Singer. The index of elliptic operators. I. Ann. of Math. (2), 87 (1968), 484-530.
[4] Beals, R.: Characterization of pseudodifferential operators and applications, Duke Math. Journal 44, 45-57 (1977), ibid. 46, p. 215 (1979).
[5] N. Berline, E. Getzler, and M. Vergne. Heat kernels and Dirac operators. Grundlehren Text Editions. Springer-Verlag, Berlin, 2004. Corrected reprint of the 1992 original.
[6] M. do Carmo. Riemannian Geometry. BirkhÃØuser, Boston 1992.
[7] A. Douady. Un espace de Banach dont le groupe linéaire n'est pas connexe. Indag. Math., 27:789-789, 1965.
[8] B. V. Fedosov. Index theorems. In Partial differential equations. VIII, 155-251, Encyclopaedia Math. Sci., 65, Springer, Berlin, 1996.
[9] P. B. Gilkey. Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem. Publish or Perish, Wilmington, Del., 1984.
[10] F. Hirzebruch. Arithmetic genera and the theorem of Riemann-Roch for algebraic varieties. Proc. Nat. Acad. Sci. U. S. A., 40:110-114, 1954.
[11] L. Hörmander. The Analysis of Linear Partial Differential Operators III Classics in Mathematics. Springer, Berlin, 2007.
[12] I. Hwang. The L^{2}-boundedness of pseudodifferential operators. Trans. Amer. Math. Soc., 302:55-76 (1987).
[13] J. J. Kohn and L. Nirenberg. An algebra of pseudo-differential operators. Comm. Pure Appl. Math. 18 (1965), 269-305.
[14] H. Kumano-go. Pseudo-differential operators. The MIT-Press, Cambridge, Mass. 1982.
[15] G. Landweber. K-theory and elliptic operators. arXiv:0504555, 2005.
[16] H.B. Lawson, M.-L. Michelsohn. Spin Geometry. Princeton University Press, Princeton NJ 1989.
[17] W. Rudin. Functional Analysis. Second Edition. McGraw-Hill, Inc., New York, 1991.
[18] H. SchrÃ \mathbb{C} der. Funktionalanalysis. 2. Auflage. Verlag Harry Deutsch, 2000.
[19] E. Schrohe. Boundedness and spectral invariance for standard pseudodifferential operators on anisotropically weighted L^{p}-Sobolev spaces, Integral Equations OperatorTheory 13:271-284 (1990).
[20] M.A. Shubin Pseudodifferential operators and spectral theory. Translated from the 1978 Russian original by Stig I. Andersson. Second edition. Springer-Verlag, Berlin, 2001
[21] M. Taylor. Partial Differential Equations I. Basic theory. Applied Mathematical Sciences, 115. Springer-Verlag, New York, 1996.
[22] M. Taylor. Partial Differential Equations II. Qualitative studies of linear equations. Applied Mathematical Sciences, 116. Springer-Verlag, New York, 1996.

