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10. The Cohomological Index Formula

10.1. Outline. We consider a class x 2 Kc(TM) for the compact manifold
M . Our task is to compute indt x in cohomological terms. We recall that
one starts with the embeddings of M into RK for some large K.

indt x : Kc(TM)
i!
! Kc(TN)

F
! Kc(TRK

)
(j!)�1

! Z
is given by the Thom isomorphism i! associated with the embedding of M
into the normal bundle N to M in RK , the identification of TN with an
open neighborhood of TM in TN , the extension map F and the inverse of
the Thom isomorphism associated with the embedding j : {0} ,! RK .

We therefore consider the diagram

Kc(TM)
i!

����! Kc(TN)
F

����! Kc(RK
)

j!
 ���� K(T0)

ch

??y ch

??y ch

??y ch

??y

Heven
c (TM)

i⇤
����! Heven

c (TN)
F⇤
����! Heven

c (TRK
)

j⇤
 ���� Heven

c (0).

with the Chern character and the cohomology maps i⇤, F⇤ and j⇤ correspond-
ing to i!, F and j!.

As a preliminary result we note:

10.2. Lemma. Let X be a compact space and E a vector bundle over X
with projection p : E ! X and total space N . Denote by Ẽ the lift of E to
N .

Recall that the Bott generator �E is given by the class of

�E = (⇤
even

(E⇤
),⇤odd

(E⇤
), b(z))

in Kc(N), where b(z) = "(z) + "⇤(z).
We have

ch�E = ch(⇤
even

(E⇤
))� ch(⇤

odd
(E⇤

))(1)

= det !̃ det
1� e�!̃

!̃
= det !̃Td

�1
(Ẽ).

Here !̃ is the normalized curvature form associated with a special connection
which we will construct in the proof.

Moreover, we obtain
p! ch�E = Td

�1
(E).

Proof. Let @ be a hermitian connection on E and � the connection form in
local coordinates. This defines a connection on the lifting Ẽ of E to N with
the same connection form �, the so-called lifting of @. We also denote it by
@. The bundle Ẽ has the section ⌫ = z/|z|, defined for z 6= 0. Here z is the
fiber variable in E.

We next define a connection @̃ for Ẽ by letting

@̃u = @u+ ⇢(�@⌫hu, ⌫i+ ⌫hu, @⌫i+ h@⌫, ⌫iu).

It satisfies @̃⌫ = 0 for |z| � 1. Differentiating this identity we conclude that
⌦̃⌫ = 0, so that also det !̃ = 0 for |z| � 1. In particular, the m-th Chern
form yields a cohomology class in H2m

c (N).
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It can be shown that p⇤ det !̃ = 1, so that det !̃ = UE , the Thom genera-
tor.

Now for the computation of p! ch�E . With the above connection @̃ asso-
ciate connections on E⇤ and the exterior powers ⇤k

(E⇤
). From the fact that

@̃⌫ = 0 one obtains @̃b(z) = 0 (CHK). By definition, we therefore have

ch�E = tr(e!̃0)� tr(e!1),

where !̃0 and !1 are the normalized curvatures associates with @̃ in ⇤
even

(E⇤
)

and ⇤
odd

(E⇤
), respectively. From Lemma 7.22(c) we obtain (1).

We know already that det !̃ is a form with compact support on N which
defines the generator UE 2 H2m

comp(N) since p⇤(det !̃) = 1.
In the factor det

1�e
�!̃

!̃
we can replace !̃ by !, the normalized curvature

associated with @ without changing the cohomology class H(N) nor the
class of all the products in Hcomp(N). Since the form ! does not contain the
differentials dzj and dz̄j (in fact, by the computation in 7.22, det( !

I�exp(�!))

is precisely the Todd class for E) and p⇤(det !̃) = 1, integration over the
fibers yields

p⇤(ch�E) = Td
�1

(E).

⇤
10.3. Proposition. Let E be a complex vector bundle of rank n over the
space X, i : X ! E the embedding of X into E as the zero section, i! and
ĩ! the Thom isomorphisms in K-theory and cohomology, respectively, and
p : E ! X the base point projection. Consider the diagram

Kc(X)
i!

����! Kc(E)

ch

??y ch

??y

Heven
c (X)

ĩ!
����! Heven

c (E).

Then, for x 2 Kc(X),

(̃i!)
�1

ch i!(x) = Td(E)
�1
^ chx.

Proof. Thom’s isomorphism theorem 8.10 states that i!x = �E p!x is given
by multiplication of the class of the pull-back with the Bott generator �E .
Then

(̃i!)
�1

ch i!(x) = (̃i!)
�1

ch(�E p!x)
8.8
= (̃i!)

�1
(ch�E ^ ch p!x) (ch is module homomorphism)

= ((̃i!)
�1

ch�E) ^ chx) (̃i! ch = ch p!)
10.2
= Td(E)

�1
^ chx.

⇤
10.4. Corollary. Consider the scrunch map

q : TRK ⇠= RK
� RK ⇠= CK

! {0}.

We consider CK as a complex vector bundle over {0} and let j ,! CK be
the inclusion map. Apply Proposition 10.3 for a class e 2 K(0). Then
(j̃!)�1

ch(j!e) = Td(CK
)
�1

ch e. Now CK is a trivial bundle. The curvature
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is zero and therefore Td(CK
) = 1 = Td(CK

)
�1. Moreover, (j̃)�1

= q! is
simply integration, and the Chern character ch : K(0) ! H0

(0) is the map
Z 3 z 7! z. For u = j!e 2 Kc(CK

) we therefore find
Z

TRK
chu = e considered as an integer.

10.5. Corollary. Let V be a real vector bundle over M , p : V ! M the
projection. Consider the induced bundle TV over TM . Here, we have a
natural isomorphism TV ⇠= p⇤V � p⇤V (first term in the base, second in the
fiber). Therefore TV naturally has a complex structure as a vector bundle
over TM , and we can identify it with the complex bundle V ⌦C. We therefore
can apply Proposition 10.3 with TM in the role of X and TV ⇠= V ⌦ C in
the role of E and obtain

(̃i!)
�1

ch(i!x) = Td(V ⌦ C)�1
chx, x 2 Kc(TM).

Now we recall from the proof of the Todd isomorphism Theorem 8.10 that
(̃i!)�1

= p! and that p! is integration over the fiber. Integrating over all of
TV we obtain

Z

TV

ch(i!x) =

Z

TM

p! ch(i!x) =

Z

TM

Td
�1

(V ⌦ C) chx.

10.6. Proof of the cohomological formula. We recall the construction
of the map f! associated with the embedding f : X ,! RK : It is F � i!, i.e.
the Thom isomorphism i! : Kc(TM)! Kc(TN) for the normal bundle N to
the embedding of X into RK followed by the inclusion F , where now TN is
identified with an open neighborhood of X in TRK . The fact that the Chern
character behaves naturally under the embedding TN ,! TRK shows that

Z

TRK
ch(f!x) =

Z

TRK
ch(F � i!x) =

Z

TN

ch(i!x), x 2 Kc(TM).(1)

According to Corollary 10.5, with N in the role of V ,
Z

TN

ch(i!x) =

Z

TM

Td
�1

(N ⌦ C) chx.(2)

We next note that TM � N is a trivial bundle over X. The Todd class of
a trivial bundle is 1, since the curvature is zero. Since the Todd class is
multiplicative, we conclude that

Td
�1

(N ⌦ C) = Td(TM ⌦ C) =: Td(M),

so that the right hand side of (2) equals
Z

TM

Td(M) chx.(3)

Now we apply this to the class x = [�(P )] = [(⇡⇤E0,⇡⇤E1,�)] in Kc(TM)

associated with a pseudodifferential operator

P : C1
(M,E0

)! C1
(M,E1

).

Its analytic index is indP . The topological index is (see the diagram in 10.1)
indt �(j!)�1

� f!.
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We can then apply Corollary 10.4 for the case, where j!e = f!x; and
combine it with the above computation and the various definitions to see
that

indP = e =

Z

TRK
ch j!e

j!e=f!x
=

Z

TRK
ch(f!x)

(1),(2),(3)
=

Z

TM

Td(M) chx

=

Z

TM

Td(M) ch[�(P )].

10.7. Corollary. On an odd-dimensional compact manifold, the index of
every elliptic differential operator is zero.

Proof. Consider the diffeomorphism c : TM ! TM given by (x, v) 7!
(x,�v). If the dimension of M is odd, then c changes the orientation.

If P is an elliptic differential operator of order m, then the principal
symbol �(P ) is an m-homogeneous function, and therefore �(P )(x,�⇠) =

(�1)
mP (x, ⇠). Hence c⇤�(P ) = (�1)

m�(P ). Since �(P ) and �(P )(·,�·) are
homotopic, e.g. by �(t, P ) = ei⇡t�(P ). Reducing the order to zero results in
multiplying the function �(P )(x, ⇠) by a strictly positive, �m-homogeneous
factor, say �(x, ⇠). It is then clear that the triples (⇡⇤E0,⇡⇤E1,�(P )/�)
and (⇡⇤E0,⇡⇤E1,��(P )/�) define the same class in K-theory, and therefore
(note that the Todd class only depends on the x-variables and therefore does
not feel the action of c)

indP =

Z

TX

ch([�(P )]) Td(X)

=

Z

c⇤TX

c⇤(ch([�(P )]) Td(X))

= �

Z

TX

(ch([�(P )]) Td(X)) change in orientation; invariance of K-class

= � indP

⇤
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