10. The Cohomological Index Formula

10.1. Outline. We consider a class $x \in K_c(TM)$ for the compact manifold M. Our task is to compute $\operatorname{ind}_t x$ in cohomological terms. We recall that one starts with the embeddings of M into \mathbb{R}^K for some large K.

$$\operatorname{ind}_t x: K_c(TM) \xrightarrow{i_!} K_c(TN) \xrightarrow{F} K_c(T\mathbb{R}^K) \xrightarrow{(j_!)^{-1}} \mathbb{Z}$$

is given by the Thom isomorphism $i_!$ associated with the embedding of M into the normal bundle N to M in \mathbb{R}^K , the identification of TN with an open neighborhood of TM in TN, the extension map F and the inverse of the Thom isomorphism associated with the embedding $j : \{0\} \hookrightarrow \mathbb{R}^K$.

We therefore consider the diagram

with the Chern character and the cohomology maps i_*, F_* and j_* corresponding to $i_!, F$ and $j_!$.

As a preliminary result we note:

10.2. Lemma. Let X be a compact space and E a vector bundle over X with projection $p: E \to X$ and total space N. Denote by \tilde{E} the lift of E to N.

Recall that the Bott generator β_E is given by the class of

$$\beta_E = (\Lambda^{even}(E^*), \Lambda^{odd}(E^*), b(z))$$

in $K_c(N)$, where $b(z) = \varepsilon(z) + \varepsilon^*(z)$. We have

(1)
$$\operatorname{ch} \beta_E = \operatorname{ch}(\Lambda^{even}(E^*)) - \operatorname{ch}(\Lambda^{odd}(E^*))$$

= $\operatorname{det} \tilde{\omega} \operatorname{det} \frac{1 - e^{-\tilde{\omega}}}{\tilde{\omega}} = \operatorname{det} \tilde{\omega} \operatorname{Td}^{-1}(\tilde{E})$

Here $\tilde{\omega}$ is the normalized curvature form associated with a special connection which we will construct in the proof.

Moreover, we obtain

$$p_! \operatorname{ch} \beta_E = \operatorname{Td}^{-1}(E).$$

Proof. Let ∂ be a hermitian connection on E and Γ the connection form in local coordinates. This defines a connection on the lifting \tilde{E} of E to N with the same connection form Γ , the so-called lifting of ∂ . We also denote it by ∂ . The bundle \tilde{E} has the section $\nu = z/|z|$, defined for $z \neq 0$. Here z is the fiber variable in E.

We next define a connection $\tilde{\partial}$ for \tilde{E} by letting

$$\partial u = \partial u + \rho(-\partial \nu \langle u, \nu \rangle + \nu \langle u, \partial \nu \rangle + \langle \partial \nu, \nu \rangle u).$$

It satisfies $\tilde{\partial}\nu = 0$ for $|z| \ge 1$. Differentiating this identity we conclude that $\tilde{\Omega}\nu = 0$, so that also det $\tilde{\omega} = 0$ for $|z| \ge 1$. In particular, the *m*-th Chern form yields a cohomology class in $H_c^{2m}(N)$.

It can be shown that $p_* \det \tilde{\omega} = 1$, so that $\det \tilde{\omega} = U_E$, the Thom generator.

Now for the computation of $p_! \operatorname{ch} \beta_E$. With the above connection $\tilde{\partial}$ associate connections on E^* and the exterior powers $\Lambda^k(E^*)$. From the fact that $\tilde{\partial}\nu = 0$ one obtains $\tilde{\partial}b(z) = 0$ (CHK). By definition, we therefore have

$$\operatorname{ch}\beta_E = \operatorname{tr}(e^{\omega_0}) - \operatorname{tr}(e^{\omega_1}),$$

where $\tilde{\omega}_0$ and ω_1 are the normalized curvatures associates with $\tilde{\partial}$ in $\Lambda^{even}(E^*)$ and $\Lambda^{odd}(E^*)$, respectively. From Lemma 7.22(c) we obtain (1).

We know already that $\det \tilde{\omega}$ is a form with compact support on N which defines the generator $U_E \in H^{2m}_{comp}(N)$ since $p_*(\det \tilde{\omega}) = 1$.

In the factor det $\frac{1-e^{-\tilde{\omega}}}{\tilde{\omega}}$ we can replace $\tilde{\omega}$ by ω , the normalized curvature associated with ∂ without changing the cohomology class H(N) nor the class of all the products in $H_{comp}(N)$. Since the form ω does not contain the differentials dz^j and $d\bar{z}^j$ (in fact, by the computation in 7.22, $\det(\frac{\omega}{I-\exp(-\omega)})$ is precisely the Todd class for E) and $p_*(\det \tilde{\omega}) = 1$, integration over the fibers yields

$$p_*(\operatorname{ch}\beta_E) = \operatorname{Td}^{-1}(E).$$

10.3. Proposition. Let *E* be a complex vector bundle of rank *n* over the space *X*, $i: X \to E$ the embedding of *X* into *E* as the zero section, i_1 and \tilde{i}_1 the Thom isomorphisms in K-theory and cohomology, respectively, and $p: E \to X$ the base point projection. Consider the diagram

$$\begin{array}{ccc} K_c(X) & \stackrel{i_!}{\longrightarrow} & K_c(E) \\ ch & ch \\ H_c^{even}(X) & \stackrel{\tilde{i}_!}{\longrightarrow} & H_c^{even}(E) \end{array}$$

Then, for $x \in K_c(X)$,

$$(\tilde{i}_!)^{-1} \operatorname{ch} i_!(x) = \operatorname{Td}(E)^{-1} \wedge \operatorname{ch} x.$$

Proof. Thom's isomorphism theorem 8.10 states that $i_!x = \beta_E p!x$ is given by multiplication of the class of the pull-back with the Bott generator β_E . Then

$$\begin{aligned} &(\tilde{i}_{!})^{-1} \operatorname{ch} i_{!}(x) = (\tilde{i}_{!})^{-1} \operatorname{ch}(\beta_{E} p^{!} x) \\ &\stackrel{8.8}{=} \quad (\tilde{i}_{!})^{-1} (\operatorname{ch} \beta_{E} \wedge \operatorname{ch} p^{!} x) \quad (\text{ch is module homomorphism}) \\ &= \quad ((\tilde{i}_{!})^{-1} \operatorname{ch} \beta_{E}) \wedge \operatorname{ch} x) \quad (\tilde{i}_{!} \operatorname{ch} = \operatorname{ch} p^{!}) \\ &\stackrel{10.2}{=} \quad \operatorname{Td}(E)^{-1} \wedge \operatorname{ch} x. \end{aligned}$$

10.4. Corollary. Consider the scrunch map

$$q: T\mathbb{R}^K \cong \mathbb{R}^K \oplus \mathbb{R}^K \cong \mathbb{C}^K \to \{0\}.$$

We consider \mathbb{C}^K as a complex vector bundle over $\{0\}$ and let $j \hookrightarrow \mathbb{C}^K$ be the inclusion map. Apply Proposition 10.3 for a class $e \in K(0)$. Then $(\tilde{j}_!)^{-1} \operatorname{ch}(j_! e) = \operatorname{Td}(\mathbb{C}^K)^{-1} \operatorname{ch} e$. Now \mathbb{C}^K is a trivial bundle. The curvature

is zero and therefore $\operatorname{Td}(\mathbb{C}^K) = 1 = \operatorname{Td}(\mathbb{C}^K)^{-1}$. Moreover, $(\tilde{j})^{-1} = q_!$ is simply integration, and the Chern character $ch : K(0) \to H^0(0)$ is the map $\mathbb{Z} \ni z \mapsto z$. For $u = j_! e \in K_c(\mathbb{C}^K)$ we therefore find

$$\int_{T\mathbb{R}^K} \operatorname{ch} u = e \quad \text{considered as an integer.}$$

10.5. Corollary. Let V be a real vector bundle over $M, p : V \to M$ the projection. Consider the induced bundle TV over TM. Here, we have a natural isomorphism $TV \cong p^*V \oplus p^*V$ (first term in the base, second in the fiber). Therefore TV naturally has a complex structure as a vector bundle over TM, and we can identify it with the complex bundle $V \otimes \mathbb{C}$. We therefore can apply Proposition 10.3 with TM in the role of X and $TV \cong V \otimes \mathbb{C}$ in the role of E and obtain

$$(\tilde{i}_!)^{-1}\operatorname{ch}(i_!x) = \operatorname{Td}(V \otimes \mathbb{C})^{-1}\operatorname{ch} x, \quad x \in K_c(TM).$$

Now we recall from the proof of the Todd isomorphism Theorem 8.10 that $(\tilde{i}_1)^{-1} = p_1$ and that p_1 is integration over the fiber. Integrating over all of TV we obtain

$$\int_{TV} \operatorname{ch}(i_! x) = \int_{TM} p_! \operatorname{ch}(i_! x) = \int_{TM} \operatorname{Td}^{-1}(V \otimes \mathbb{C}) \operatorname{ch} x.$$

10.6. Proof of the cohomological formula. We recall the construction of the map $f_!$ associated with the embedding $f : X \hookrightarrow \mathbb{R}^K$: It is $F \circ i_!$, i.e. the Thom isomorphism $i_! : K_c(TM) \to K_c(TN)$ for the normal bundle N to the embedding of X into \mathbb{R}^K followed by the inclusion F, where now TN is identified with an open neighborhood of X in $T\mathbb{R}^K$. The fact that the Chern character behaves naturally under the embedding $TN \hookrightarrow T\mathbb{R}^K$ shows that

(1)
$$\int_{T\mathbb{R}^K} \operatorname{ch}(f_! x) = \int_{T\mathbb{R}^K} \operatorname{ch}(F \circ i_! x) = \int_{TN} \operatorname{ch}(i_! x), \quad x \in K_c(TM).$$

According to Corollary 10.5, with N in the role of V,

(2)
$$\int_{TN} \operatorname{ch}(i_! x) = \int_{TM} \operatorname{Td}^{-1}(N \otimes \mathbb{C}) \operatorname{ch} x.$$

We next note that $TM \oplus N$ is a trivial bundle over X. The Todd class of a trivial bundle is 1, since the curvature is zero. Since the Todd class is multiplicative, we conclude that

$$\operatorname{Td}^{-1}(N \otimes \mathbb{C}) = \operatorname{Td}(TM \otimes \mathbb{C}) =: \operatorname{Td}(M),$$

so that the right hand side of (2) equals

(3)
$$\int_{TM} \mathrm{Td}(M) \operatorname{ch} x.$$

Now we apply this to the class $x = [\sigma(P)] = [(\pi^* E^0, \pi^* E^1, \sigma)]$ in $K_c(TM)$ associated with a pseudodifferential operator

$$P: C^{\infty}(M, E^0) \to C^{\infty}(M, E^1).$$

Its analytic index is ind P. The topological index is (see the diagram in 10.1) $\operatorname{ind}_t \circ (j_!)^{-1} \circ f_!$.

We can then apply Corollary 10.4 for the case, where $j_!e = f_!x$; and combine it with the above computation and the various definitions to see that

$$\operatorname{ind} P = e = \int_{T\mathbb{R}^K} \operatorname{ch} j_! e$$
$$\stackrel{j_! e = f_! x}{=} \int_{T\mathbb{R}^K} \operatorname{ch}(f_! x) \stackrel{(1), (2), (3)}{=} \int_{TM} \operatorname{Td}(M) \operatorname{ch} x$$
$$= \int_{TM} \operatorname{Td}(M) \operatorname{ch}[\sigma(P)].$$

10.7. Corollary. On an odd-dimensional compact manifold, the index of every elliptic differential operator is zero.

Proof. Consider the diffeomorphism $c : TM \to TM$ given by $(x, v) \mapsto (x, -v)$. If the dimension of M is odd, then c changes the orientation.

If P is an elliptic differential operator of order m, then the principal symbol $\sigma(P)$ is an m-homogeneous function, and therefore $\sigma(P)(x, -\xi) = (-1)^m P(x,\xi)$. Hence $c^*\sigma(P) = (-1)^m\sigma(P)$. Since $\sigma(P)$ and $\sigma(P)(\cdot, -\cdot)$ are homotopic, e.g. by $\sigma(t, P) = e^{i\pi t}\sigma(P)$. Reducing the order to zero results in multiplying the function $\sigma(P)(x,\xi)$ by a strictly positive, -m-homogeneous factor, say $\lambda(x,\xi)$. It is then clear that the triples $(\pi^* E^0, \pi^* E^1, \sigma(P)/\lambda)$ and $(\pi^* E^0, \pi^* E^1, -\sigma(P)/\lambda)$ define the same class in K-theory, and therefore (note that the Todd class only depends on the x-variables and therefore does not feel the action of c)

$$\operatorname{ind} P = \int_{TX} \operatorname{ch}([\sigma(P)]) \operatorname{Td}(X)$$
$$= \int_{c^*TX} c^*(\operatorname{ch}([\sigma(P)]) \operatorname{Td}(X))$$
$$= -\int_{TX} (\operatorname{ch}([\sigma(P)]) \operatorname{Td}(X)) \quad \text{change in orientation; invariance of K-class}$$
$$= -\operatorname{ind} P$$

66

References

- M. F. Atiyah. K-Theory. Lecture notes by D. W. Anderson. W. A. Benjamin, Inc., New York-Amsterdam, 1967.
- M. F. Atiyah and I. M. Singer. The index of elliptic operators on compact manifolds. Bull. Amer. Math. Soc. 69 (1963), 422–433.
- [3] M. F. Atiyah and I. M. Singer. The index of elliptic operators. I. Ann. of Math. (2), 87 (1968), 484–530.
- [4] Beals, R.: Characterization of pseudodifferential operators and applications, Duke Math. Journal 44, 45–57 (1977), ibid. 46, p. 215 (1979).
- [5] N. Berline, E. Getzler, and M. Vergne. *Heat kernels and Dirac operators*. Grundlehren Text Editions. Springer-Verlag, Berlin, 2004. Corrected reprint of the 1992 original.
- [6] M. do Carmo. Riemannian Geometry. BirkhÄQuser, Boston 1992.
- [7] A. Douady. Un espace de Banach dont le groupe linéaire n'est pas connexe. Indag. Math., 27:789–789, 1965.
- [8] B. V. Fedosov. Index theorems. In Partial differential equations. VIII, 155–251, Encyclopaedia Math. Sci., 65, Springer, Berlin, 1996.
- [9] P. B. Gilkey. Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem. Publish or Perish, Wilmington, Del., 1984.
- [10] F. Hirzebruch. Arithmetic genera and the theorem of Riemann-Roch for algebraic varieties. Proc. Nat. Acad. Sci. U. S. A., 40:110–114, 1954.
- [11] L. Hörmander. The Analysis of Linear Partial Differential Operators III Classics in Mathematics. Springer, Berlin, 2007.
- [12] I. Hwang. The L²-boundedness of pseudodifferential operators. Trans. Amer. Math. Soc., **302**:55–76 (1987).
- [13] J. J. Kohn and L. Nirenberg. An algebra of pseudo-differential operators. Comm. Pure Appl. Math. 18 (1965), 269–305.
- [14] H. Kumano-go. *Pseudo-differential operators*. The MIT-Press, Cambridge, Mass. 1982.
- [15] G. Landweber. K-theory and elliptic operators. arXiv:0504555, 2005.
- [16] H.B. Lawson, M.-L. Michelsohn. Spin Geometry. Princeton University Press, Princeton NJ 1989.
- [17] W. Rudin. Functional Analysis. Second Edition. McGraw-Hill, Inc., New York, 1991.
- [18] H. SchrA¶der. Funktionalanalysis. 2. Auflage. Verlag Harry Deutsch, 2000.
- [19] E. Schrohe. Boundedness and spectral invariance for standard pseudodifferential operators on anisotropically weighted L^p -Sobolev spaces, *Integral Equations OperatorThe*ory **13**:271 – 284 (1990).
- [20] M.A. Shubin Pseudodifferential operators and spectral theory. Translated from the 1978 Russian original by Stig I. Andersson. Second edition. Springer-Verlag, Berlin, 2001
- [21] M. Taylor. Partial Differential Equations I. Basic theory. Applied Mathematical Sciences, 115. Springer-Verlag, New York, 1996.
- [22] M. Taylor. Partial Differential Equations II. Qualitative studies of linear equations. Applied Mathematical Sciences, 116. Springer-Verlag, New York, 1996.