1. Prerequisites

In the sequel, X, Y, Z and W will denote Banach spaces. We denote by $\mathcal{L}(X, Y)$ the continuous linear operators from X to Y. It is well-known that an operator A is continuous, if and only if it is bounded, i.e., there exists a constant c such that

$$
\|A e\| \leq c\|e\| \text { for alle } \in X
$$

We write $\mathcal{K}(X, Y)$ for the subspace of compact operators (more below) and $\mathcal{F}(X, Y)$ for the space of operators of finite rank.

We will need as few theorems from functional analysis:
1.1. Neumann series. Let $A \in \mathcal{L}(X)$ with $\|A\|<1$. Then $I+A$ is invertible; in fact $(I+A)^{-1}=\sum_{0}^{\infty} A^{j}$.
1.2. Open mapping theorem. Let $A \in \mathcal{L}(X, Y)$ be surjective. Then A is an open mapping, i.e. the image of every open set is open.
1.3. Automatic continuity of inverses. Let $A \in \mathcal{L}(X, Y)$ be invertible. Then the inverse is automatically continuous, i.e. $A^{-1} \in \mathcal{L}(Y, X)$. This is a consequence of the fact that, given an open set in X, the preimage under A^{-1} is its image under A, which is open by Theorem 1.2 .
1.4. Comparable norms on Banach spaces are equivalent. Suppose a space X carries two norms, $\|\cdot\|$ and $\|\cdot\|^{\prime}$. Moreover, assume it is a Banach space for both norms and there exists a constant c such that

$$
\begin{equation*}
\|e\|^{\prime} \leq c\|e\| \text { for all } e \in X \tag{1}
\end{equation*}
$$

Then there also exists a constant $c^{\prime}>0$ such that $c^{\prime}\|e\| \leq\|e\|^{\prime} \leq c\|e\|$.
In fact, inequality (1) shows that the identity is a continuous map from $(X,\|\cdot\|)$ to $\left(X,\|\cdot\|^{\prime}\right)$. By Theorem 1.3 the inverse (here again the identity) is also continuous, which gives the second inequality.
1.5. Compact operators. We call an operator $K \in \mathcal{L}(X, Y)$ compact, if it maps bounded sets into compact sets. By linearity it suffices that the closure $\overline{K(B(0,1))}$ of the image of the unit ball is compact.

Clearly, every operator of finite rank is compact. For $K \in \mathcal{K}(X, Y)$, $A \in \mathcal{L}(Y, Z)$, and $B \in \mathcal{L}(W, X)$ the operators $A K$ and $K B$ are compact. Moreover, the space $\mathcal{K}(X, Y)$ of is a closed in $\mathcal{L}(X, Y)$. In particular, $\mathcal{K}(X)$ is a closed ideal in $\mathcal{L}(X)$. The quotient $\mathcal{L}(X) / \mathcal{K}(X)$ is called the Calkin algebra.
1.6. Compactness of the unit ball. The closed unit ball $\overline{B(0,1)}$ in a Banach space X is compact if and only if the space is finite dimensional. By linearity the statement holds for every closed ball.

Proof. It is known that the closed unit ball in a finite dimensional Banach space is compact.

Conversely suppose that it is compact. Then it is precompact, i.e. we find $x_{1}, \ldots, x_{m} \in B(0,1)$ such that

$$
B(0,1) \subseteq\left(x_{1}+B\left(0, \frac{1}{2}\right)\right) \cup \ldots \cup\left(x_{m}+B\left(0, \frac{1}{2}\right)\right)
$$

Let $Y=\operatorname{span}\left\{x_{1}, \ldots, x_{m}\right\}$. Then

$$
\begin{equation*}
B(0,1) \subseteq Y+B\left(0, \frac{1}{2}\right) \tag{1}
\end{equation*}
$$

So $B\left(0, \frac{1}{2}\right) \subseteq Y+B\left(0, \frac{1}{4}\right)$. Inserting this into (1) shows: $B(0,1) \subseteq Y+Y+$ $B\left(0, \frac{1}{4}\right)=Y+B\left(0, \frac{1}{4}\right)$. By iteration: $B(0,1) \subseteq Y+B(0, \varepsilon)$ for every $\varepsilon>0$, hence $B(0,1) \subseteq \bar{Y}=Y$, and $X=Y$ is at most m-dimensional.
1.7. Quotient norm. Let X^{\prime} be a closed subspace of X. Then we can form the quotient space X / X^{\prime} and endow it with the norm $\|[e]\|=\inf \left\{\left\|e+e^{\prime}\right\|\right.$: $\left.e^{\prime} \in X^{\prime}\right\}$.
1.8. Definition. Let X_{1}, X_{2} be subspaces of a Banach space X with $X=$ $X_{1} \oplus X_{2}$. We say that the sum is topologically direct if the canonical algebraic isomorphism $\left(x_{1}, x_{2}\right) \mapsto x_{1}+x_{2}$ from $X_{1} \times X_{2}$ to X is a homeomorphism. Equivalently we may ask that the associated projection $P_{X_{1}}: X \rightarrow X_{1}$ (or $\left.P_{X_{2}}: X \rightarrow X_{2}\right)$ is continuous. Note that $\left(x_{1}, x_{2}\right) \mapsto x_{1}+x_{2}$ is always continuous, since $\left\|x_{1}+x_{2}\right\| \leq\left\|x_{1}\right\|+\left\|x_{2}\right\|$.
1.9. Lemma. Let X_{1} and X_{2} be closed subspaces of the Banach space X with $X=X_{1} \oplus X_{2}$. Then the sum is topologically direct.

Proof. Being closed subspaces of a Banach space, X_{1} and X_{2} are complete with the induced norm. Since the decomposition $x=x_{1}+x_{2}$ of an element $x \in X$ into $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$ is unique, we may define a norm $\|\cdot\|^{\prime}$ on X by $\|x\|^{\prime}=\left\|x_{1}\right\|+\left\|x_{2}\right\|$. Since $\|x\|=\left\|x_{1}+x_{2}\right\| \leq\left\|x_{1}\right\|+\left\|x_{2}\right\|=\|x\|^{\prime}$, Theorem 1.4 shows the equivalence of both. So $\left\|x_{1}\right\|+\left\|x_{2}\right\| \leq C\|x\|$, and the sum is topologically direct.
1.10. Lemma. Let X_{1} be a finite-dimensional and X_{2} a closed subspace of X, and suppose that $X_{1} \cap X_{2}=\{0\}$. Then $X_{1} \oplus X_{2}$ is a closed subspace of X, and the sum is topologically direct.

Proof. Let $\pi: X \rightarrow X / X_{2}$ be the canonical epimorphism. Then $\pi\left(X_{1}\right)$ is a finite-dimensional subspace of X / X_{2}, hence closed. The continuity of π implies that $X_{1} \oplus X_{2}=\pi^{-1}\left(\pi\left(X_{1}\right)\right)$ is also closed, thus a Banach space. Lemma 1.9 concludes the proof.
1.11. Lemma. Every finite-dimensional subspace Y of a normed space X is closed; it even is the image of a continuous projection.
Proof. Given a basis $\left\{x_{1}, \ldots, x_{n}\right\}$ of Y choose $x_{1}^{\prime}, \ldots, x_{n}^{\prime} \in Y^{\prime}$ with $x_{j}^{\prime}\left(x_{k}\right)=$ $\delta_{j k}$. By Hahn and Banach's theorem we may extend the x_{j}^{\prime} to continuous functionals on X. Now let

$$
P x=\sum_{j=1}^{n} x_{j}^{\prime}(x) x_{k} .
$$

P is continuous, since all x_{j}^{\prime} are. Moreover, $P X=Y$, and it is easily verified that $P^{2}=P$. Finally, $Y=\operatorname{im} P=\operatorname{ker}(I-P)$ is closed.
1.12. Arzelà-Ascoli Theorem. Let \mathcal{T} be a compact Hausdorff space. A subset \mathscr{F} of $\mathscr{C}(\mathcal{T})$ is relative compact (i.e. has compact closure), if and only if it is pointwise bounded and equicontinuous.

Recall that a set \mathscr{F} of complex-valued functions on \mathcal{T} is equicontinuous provided that for every x_{0} in \mathcal{T} and every $\epsilon>0$ there exists a neighborhood U of x_{0} such that

$$
\left|f(x)-f\left(x_{0}\right)\right|<\epsilon \text { for all } x \in U \text { and all } f \in \mathscr{F} .
$$

