7. Differential rechnung in \mathbb{R}

Im Folgenden sei X ein normierter K-Vektorraum, $D \subseteq \mathbb{R}$ und $f: D \to X$ eine Funktion.

7.1. Schreibweise. Ist t_0 ein Häufungspunkt von D und $x_0 \in X$, so schreiben wir

$$\lim_{t \to t_0} f(t) = x_0,$$

falls für jede Folge (t_k) in D mit $t_k \neq t_0$ und $t_k \to t_0$ gilt $\lim_{k \to \infty} f(t_k) = x_0$. Wir können diese Definition sogar für eine Funktion $f: D \setminus \{t_0\} \to X$ anwenden.

7.2. Definition. Wir sagen, f sei in dem Häufungspunkt t_0 von D differenzierbar, falls

$$\lim_{t \to t_0} \frac{f(t) - f(t_0)}{t - t_0} =: f'(t_0) \in X$$

(Ableitung von f an der Stelle t_0) existiert

Analog kann man schreiben

$$f'(t_0) = \lim_{h \to 0} \frac{f(t_0 + h) - f(t_0)}{h},$$

wobei hier Folgen (h_k) mit $t_0 + h_k \in D, 0 \neq h_k \to 0$ betrachtet werden.

Die Funktion f heißt von rechts (bzw. von links) differenzierbar, falls man sich auf Folgen mit $t_k > t_0$ (bzw. $t_k < t_0$) beschränkt.

Die Funktion f heißt auf D differenzierbar, falls sie in jedem $t_0 \in D$ differenzierbar ist.

- 7.3. Satz. Äquivalent sind
- (a) f ist in t_0 differenzierbar.
- (b) f lässt sich in t_0 linearisieren: Es gibt eine (von t_0 abhängige) Funktion $\varphi: D \to X$ (φ wie Fehler) mit der Eigenschaft, dass

(1)
$$f(t) = f(t_0) + c(t - t_0) + \varphi(t)$$

für ein geeignetes $c \in X$ und

$$\lim_{t \to t_0} \frac{\varphi(t)}{t - t_0} = 0 \quad \text{("besser als linear")}.$$

In diesem Fall ist $c = f'(t_0)$ und $\lim_{t \to t_0} \varphi(t) = 0$.

Beweis. (a) \Rightarrow (b) Wir definieren $c = f'(t_0)$ und $\varphi(t)$ durch (1). Dann gilt

$$\frac{\varphi(t)}{t - t_0} = \frac{f(t) - f(t_0)}{t - t_0} - f'(t_0) \to 0.$$

$$(b) \Rightarrow (a)$$

$$\frac{f(t) - f(t_0)}{t - t_0} = c - \frac{\varphi(t)}{t - t_0} \to c.$$

 \triangleleft

Also ist f differenzierbar und $f'(t_0) = c$.

7.4. Folgerung. Ist f in t_0 differenzierbar, so auch stetig, da $\lim_{t\to t_0} f(t) = f(t_0)$ nach 7.2(1).

- 7.5. Satz.
- (a) Eine Funktion $f: D \to \mathbb{C}$ ist in t_0 genau dann differenzierbar, wenn $\operatorname{Re}(f)$ und $\operatorname{Im}(f)$ in t_0 differenzierbar sind.

In diesem Fall ist
$$f'(t_0) = (\operatorname{Re} f)'(t_0) + i(\operatorname{Im} f)'(t_0)$$
.

(b) Eine Funktion $f: D \to \mathbb{K}^n$ ist genau dann differenzierbar in t_0 , wenn alle Komponentenfunktionen $f_j: D \to \mathbb{K}$ differenzierbar in t_0 sind.

In diesem Fall ist $f'(t_0) = (f'_1(t_0), \dots, f'_n(t_0)).$

(c) Sind $f, g: D \to X$ differenzierbar in $t_0, c \in \mathbb{K}$, so ist $(f+g): D \to X$ differenzierbar in t_0 mit $(f+g)'(t_0) = f'(t_0) + g'(t_0)$.

Ferner ist $(cf): D \to X$ differenzierbar in t_0 mit $(cf)'(t_0) = cf'(t_0)$.

Die differenzierbaren Funktionen bilden also einen Unterraum von C(D), dem Raum der stetigen Funktionen auf D.

Beweis. Folgt sofort aus Rechenregeln für Grenzwerte.

7.6. Satz. Es seien $c: D \to \mathbb{K}$ und $f: D \to X$ differenzierbar in t_0 .

- (a) cf ist differenzierbar in t_0 und $(cf)'(t_0) = c'(t_0)f(t_0) + c(t_0)f'(t_0)$ (Produktregel).
- (b) Ist zusätzlich $c(t) \neq 0$ für alle $t \in D$, so ist auch $1/c : D \to \mathbb{K}$ differenzierbar in t_0 und

$$(1/c)'(t_0) = -c'(t_0)/c(t_0)^2$$

•

Beweis. (a) Schreibe

$$c(t)f(t) - c(t_0)f(t_0) = c(t)(f(t) - f(t_0)) + (c(t) - c(t_0))f(t_0).$$

Stetigkeit von f und Regeln für Produkt von Grenzwerten liefern Behauptung.

(b) Schreibe

$$\frac{1}{c(t)} - \frac{1}{c(t_0)} = -\frac{1}{c(t)c(t_0)}(c(t) - c(c_0).$$

7.7. Beispiele.

- (a) f(t) = c (konstant): f ist differenzierbar auf \mathbb{R} mit $f'(t_0) = \lim_{t \to t_0} \frac{c c}{t t_0} = 0$ für jedes t_0 .
- (b) f(t) = t: f ist differenzierbar auf \mathbb{R} mit

$$f'(t_0) = \lim_{t \to t_0} \frac{t - t_0}{t - t_0} = 1 \text{ für jedes } t_0 \in \mathbb{R}.$$

(c) $f_n(t) = t^n, n \in \mathbb{N}$: f differenzierbar auf \mathbb{R} wegen (b) und 7.6(a) mit

$$f'_n(t) = nt^{n-1}$$
 mit vollständiger Induktion, $n = 1, 2, ...$

Der Induktionsschritt $n \to n+1$: Es ist $f_{n+1} = f_1 \cdot f_n$, also $f'_{n+1} = f'_1 f_n + f_1 f'_n = (n+1) f_n$.

(d) $f_{-n}(t) = t^{-n}, n \in \mathbb{N}$: f ist differenzierbar auf $\mathbb{R} \setminus \{0\}$ wegen 7.6(d) und

$$(f_{-n})'(t) = -\frac{f_n'(t)}{f_n^2(t)} = -\frac{nt^{n-1}}{t^{2n}} = -nt^{-n-1}.$$

(e) $f(t) = e^t$ ist differenzierbar auf \mathbb{R} mit $f'(t) = e^t$, denn

$$\frac{e^{t+h} - e^t}{h} = e^t \frac{e^h - 1}{h} \to e^t,$$

denn es ist

$$0 \le |e^h - 1 - h| = \left| \sum_{k=2}^{\infty} \frac{h^k}{k!} \right| \le |h|^2 \sum_{k=0}^{\infty} |h|^k = |h|^2 \frac{1}{1 - |h|}$$

somit

$$0 \le \left| \frac{e^h - 1}{h} - 1 \right| \le \frac{|h|}{1 - |h|} \to 0.$$

Also

$$\lim_{h \to 0} \frac{e^h - 1}{h} = 1.$$

(f) \sin ist differenzierbar auf \mathbb{R} mit $\sin' = \cos$, denn

$$\frac{\sin(t+h) - \sin t}{h} = \frac{\sin t \cos h - \cos t \sin h - \sin t}{h}$$
$$= \sin t \frac{\cos h - 1}{h} + \cos t \frac{\sin h}{h}$$

Nun ist

$$|\cos h - 1| = |\sum_{k=1}^{\infty} (-1)^k \frac{h^{2k}}{2k!}| \le |h|^2 \sum_{k=0}^{\infty} |h|^k$$

= $|h|^2 \frac{1}{1 - |h|}$

also

$$\lim \frac{\cos h - 1}{h} = 0.$$

Ferner

$$|\sin h - h| = |\sum_{k=1}^{\infty} (-1)^k \frac{h^{2k+1}}{(2k+1)!}| \le |h|^2 \sum_{k=0}^{\infty} |h|^k = |h|^2 \frac{1}{1-|h|},$$

also

$$\lim_{h \to 0} \frac{\sin h}{h} - 1 = 0$$

Einsetzen der Grenzwerte liefert die Behauptung

- (g) cos ist differenzierbar auf \mathbb{R} und $\cos' = -\sin$: Analog.
- (h) f(t) = |t| differenzierbar auf $\mathbb{R} \setminus \{0\}$ mit

$$f'(t) = \begin{cases} 1 & t > 0 \\ -1 & t < 0 \end{cases}.$$

Rechtsseitig differenzierbar in 0 (rechtseitige Ableitung = 1).

Linksseitig differenzierbar in 0 (linksseitige Ableitung = -1).

Aber nicht differenzierbar in 0! Der linksseitige Grezwert für die Ableitung in 0 ist -1, der rechtsseitige ist +1. Wäre die Funktion differenzierbar, so müssten beide gleich sein.

7.8. Satz. Ableitung der Umkehrfunktion. Es sei $D \subseteq \mathbb{R}$ ein abgeschlossenes Intervall, $f: D \to \mathbb{R}$ stetig und streng monoton, E = f(D). Dann hat f bekanntlich eine Umkehrfunktion $F: E \to D$. Ist zudem f differenzierbar in $t_0 \in D$ und $f'(t_0) \neq 0$, so ist F differenzierbar in $x_0 = f(t_0) \in E$, und es gilt

$$F'(x_0) = \frac{1}{f'(F(x_0))}.$$

Beweis. Sei (x_k) Folge in $E \setminus \{f(t_0)\}$ mit $x_k \to f(t_0) =: x_0$. Setze $t_k = F(x_k)$. Da F stetig ist nach (5.15), gilt $t_k \to t_0$; ferner ist $t_k \neq t_0$ für alle k, da $f: D \to E$ bijektiv ist.

Nun gilt

$$\frac{F(x_k) - F(x_0)}{x_k - x_0} = \frac{t_k - t_0}{f(t_k) - f(t_0)}.$$

Da $f'(t_0) \neq 0$ ist, existiert nach 3.9 der Grenzwert, und $F'(x_0) = \frac{1}{f'(t_0)} = \frac{1}{f'(F(x_0))}$.

7.9. Beispiele.

(a) $\ln : \mathbb{R}_+ \to \mathbb{R}$ ist die Umkehrfunktion von exp. Also ist

$$\ln'(t) = \frac{1}{\exp'(\ln t)} = \frac{1}{\exp(\ln t)} = \frac{1}{t}.$$

(b) $\arcsin: [-1,1] \to [-\pi/2,\pi/2]$ ist die Umkehrfunktion zu sin, also

$$\arcsin'(t) = \frac{1}{\sin'(\arcsin t)} = \frac{1}{\cos(\arcsin t)}, \quad t \in]-1,1[.$$

Auf $[-\pi/2, \pi/2]$ ist $\cos t \ge 0$. Setzen wir $x = \arcsin t$, so gilt $\cos x = +\sqrt{1-\sin^2 x}$ und somit

$$\arcsin'(t) = \frac{1}{\sqrt{1 - t^2}}.$$

(c) $\arctan : \mathbb{R} \to]-\pi/2, \pi/2[$ ist die Umkehrfunktion zu tan. Nun sieht man leicht: $\tan'(t) = \left(\frac{\sin t}{\cos t}\right)' = 1 + \tan^2 t$. Es folgt:

$$\arctan'(t) = \frac{1}{\tan'(\arctan t)} = \frac{1}{1 + \tan^2(\arctan t)} = \frac{1}{1 + t^2}.$$

7.10. Satz. (Kettenregel). Es seien $D, E \subseteq \mathbb{R}$ und $f: D \to \mathbb{R}, g: E \to X$ mit $f(D) \subseteq E$.

Ist f in $t_0 \in D$ differenzierbar und g in $e_0 = f(t_0)$ differenzierbar, so ist die Komposition $g \circ f : D \to X$ in t_0 differenzierbar und $(g \circ f)'(t_0) = g'(f(t_0))f'(t_0)$.

Beweis. Definiere $g^*: E \to \mathbb{R}$ durch

$$g^*(e) = \begin{cases} \frac{g(e) - g(e_0)}{e - e_0} & x \neq e_0 \\ g'(e_0) & e = e_0 \end{cases}.$$

Da g in e_0 differenzierbar ist, gilt $\lim_{e\to e_0} g^*(e) = g'(e_0)$, also ist g^* stetig. Außerdem gilt für alle $e \in E$

$$g(e) - g(e_0) = g^*(e)(e - e_0).$$

Somit folgt

(1)
$$\frac{g(f(t)) - g(f(t_0))}{t - t_0} = g^*(f(t)) \frac{f(t) - f(t_0)}{t - t_0}.$$

Nun ist $\lim_{t\to t_0} f(t) = f(t_0)$ nach 7.4. Also existiert in (1) der Grenzwert für $t\to t_0$, und es gilt $(g\circ f)'(t_0))=g'(f(t_0))f'(t_0)$.

7.11. Beispiel. $f(t) = t^c = \exp(c \ln t); t > 0, c \in \mathbb{R}$ fest. Dann ist

$$f'(t) = \exp'(c \ln t) \cdot c \frac{1}{t} = t^c c \frac{1}{t} = ct^{c-1}.$$

7.12. Definition. Es sei $f: D \to X$ differenzierbar in D. Ist ferner f' differenzierbar in $t_0 \in D$, so heißt $(f')'(t_0)$ die zweite Ableitung von f in t_0 und wird mit $f''(t_0)$ bezeichnet.

Analog höhere Ableitungen: $f''', f^{(4)}, \dots$ allgemein $f^{(n)}, n \in \mathbb{N}_0$.

Man schreibt auch

$$f' = \frac{df}{dt}, \quad f'' = \frac{d^2f}{dt^2}, \quad \dots, \quad f^{(n)} = \frac{d^nf}{dt^n}.$$

Man sagt, f sei k-mal stetig differenzierbar auf D, falls f k-mal differenzierbar ist und die k-te Ableitung stetig ist. Schreibe $f \in C^k(D,X)$, für $X = \mathbb{R}$ oder $X = \mathbb{C}$ schreibt man meist $f \in C^k(D)$.

Extrema.

7.13. Lokale und globale Extrema. Abgeschlossene Intervalle $[a,b], a < b \in \mathbb{R}$ sind kompakt nach dem Satz von Heine-Borel 6.14. Ist $f : [a,b] \to \mathbb{R}$ stetig, so hat f auf [a,b] (mindestens) ein Maximum und ein Minimum. Man nennt diese genauer globale Maxima/Minima. Man sagt, f habe in $t_0 \in [a,b]$ ein lokales Maximum, falls ein $\varepsilon > 0$ existiert mit

(1)
$$f(t_0) \ge f(t) \quad \forall t \in [a, b] \text{ mit } |t - t_0| < \varepsilon.$$

Analog hat f ein lokales Minimum in t_0 , falls

(2)
$$f(t_0) \le f(t) \quad \forall t \in [a, b] \text{ mit } |t - t_0| < \varepsilon.$$

Man spricht von einem isolierten lokalen Maximum/Minimum, falls (1) bzw. (2) nur für t_0 Gleichheit gilt.

"Extremum" ist der gemeinsame Oberbegriff für "Maximum" und "Minimum".

7.14. Satz. Die Funktion $f:[a,b] \to \mathbb{R}$ sei im Punkt $t_0 \in]a,b[$ differenzierbar und habe dort ein lokales Extremum. Dann ist $f'(t_0) = 0$.

Beweis. f besitze in t_0 ein lokales Maximum. Dann existiert ein $\varepsilon > 0$, so dass $B(t_0, \varepsilon) =]t_0 - \varepsilon, t_0 + \varepsilon[\subseteq]a, b[$ und $f(t) \le f(t_0) \ \forall t \in B(t_0, \varepsilon)$. Wir schließen für die links- bzw. rechtsseitige Ableitung f_- und f_+ , dass

$$f'_{+}(t_0) = \lim_{t \to t_0^+} \frac{f(t) - f(t_0)}{t - t_0} \le 0$$

$$f'_{-}(t_0) = \lim_{t \to t_0^{-}} \frac{f(t) - f(t_0)}{t - t_0} \ge 0.$$

Da f in t_0 differenzierbar ist, gilt $f'_+(t_0) = f'_-(t_0) = f'(t_0)$, also $f'(t_0) = 0$.

Für Minima analog.

7.15. Bemerkung. Notwendig, nicht hinreichend: $f:[-1,1] \to \mathbb{R}$ mit $f(t)=t^3$ hat kein Extremum in $t_0=0$, obwohl f'(0)=0.

 \triangleleft

7.16. Bemerkung. Für das globale Maximum/Minimum einer stetigen Funktion $f:[a,b] \to \mathbb{R}$ gibt es also zwei Möglichkeiten:

- (i) Es liegt auf dem Rand des Intervalls: Untersuche daher f(a), f(b).
- (ii) Es liegt im Inneren]a,b[. Dort kann man 7.14 anwenden, vorausgesetzt dass f in]a,b[differenzierbar ist.

Der Mittelwertsatz.

7.17. Satz. (Satz von Rolle). Es sei a < b und $f : [a, b] \to \mathbb{R}$ eine stetige Funktion, differenzierbar in [a, b[. Ist f(a) = f(b), so existiert ein $t_0 \in]a, b[$ mit $f'(t_0) = 0$.

Wichtig ist hier, dass f reellwertig ist!

Beweis. f konstant $\Rightarrow f' = 0$, nichts zu zeigen.

Ist f nicht konstant, so hat f ein Extremum t_0 im Inneren. Dort ist $f'(t_0) = 0$ nach 7.14.

7.18. Satz. (Mittelwertsatz). Es sei a < b, und $f : [a, b] \to \mathbb{R}$ stetig, differenzierbar in]a, b[. Dann existiert ein $t_0 \in [a, b[$ mit

(1)
$$f(b) - f(a) = f'(t_0)(b - a).$$

Beweis. Definiere $g:[a,b]\to\mathbb{R}$ durch $g(t)=f(t)-\frac{f(b)-f(a)}{b-a}(t-a)$. Dann ist g stetig in [a,b] und g(a)=f(a)=g(b). Nach Rolle existiert ein t_0 mit $0=g'(t_0)=f'(t_0)-\frac{f(b)-f(a)}{b-a}$.

7.19. Folgerungen. Sei f wie in 7.17.

(a) Falls $m \leq f'(\xi) \leq M$ für geeignete $m, M \in \mathbb{R}$ und alle $\xi \in]a, b[$, so ist für alle $s, t \in [a, b]$ mit $s \leq t$

$$m(t-s) \le f(t) - f(s) \le M(t-s).$$

(b) Falls $|f'(\xi)| \leq C$ ist für geeignete $C \in \mathbb{R}$ und alle $\xi \in]a, b[$, so ist $\forall s, t \in [a, b]$

$$|f(t) - f(s)| \le C|t - s|.$$

(c) Falls f'(t) = 0 ist für alle $t \in]a, b[$, so ist f konstant nach (b).

7.20. Eine einfache Differentialgleichung. Sei $c \in \mathbb{R}$, $t_0 \in D$ und $f: D \to \mathbb{R}$ differenzierbar mit

$$f'(t) = cf(t) \quad \forall t \in D.$$

Dann gilt $f(t) = f(t_0)e^{c(t-t_0)}$.

Beweis. Setze $g(t) = f(t)e^{-ct}$. Dann gilt $g'(t) = f'(t)e^{-ct} - cf(t)e^{-ct} = (f'(t) - cf(t))e^{-ct} = 0$. Daher ist g konstant, also $g(t) = g(t_0) = f(t_0)e^{-ct_0} \ \forall t$.

7.21. Satz. Ist $f:[a,b] \to \mathbb{R}$ stetig und differenzierbar in]a,b[, so gilt:

Ist $f'(t) \ge 0 \ \forall t \in]a,b[$, so ist f monoton wachsend.

Ist $f'(t) > 0 \ \forall t \in]a, b[$, so ist f streng monoton wachsend.

Ist $f'(t) \leq 0 \ \forall t \in]a,b[$, so ist f monoton fallend.

Ist $f'(t) < 0 \ \forall t \in]a,b[$, so ist f streng monoton fallend.

Umgekehrt: Ist f monoton wachsend bzw. fallend auf [a,b], so ist $f'(t) \ge 0$ bzw. ≤ 0 für alle $t \in]a,b[$

Beweis. Die ersten Aussagen folgen sofort aus dem Mittelwertsatz. Für die Umkehrung betrachtet man den Differenzenquotienten.

7.22. Satz. Es sei $f:]a, b[\to \mathbb{R}$ differenzierbar. In $t_0 \in]a, b[$ sei f zweimal differenzierbar mit $f'(t_0) = 0, f''(t_0) > 0$ (bzw. $f''(t_0) < 0$).

Dann besitzt f in t_0 ein isoliertes lokales Minimum (bzw. ein isoliertes lokales Maximum).

Bemerkung: Die Bedingung ist hinreichend, nicht notwendig: Betrachte etwa $f(t) = t^4$ in t = 0.

Beweis. Es ist $\lim_{t\to 0} \frac{f'(t)-f'(t_0)}{t-t_0}=f''(t_0)>0$. Also existiert zu $\varepsilon=f''(t_0)/2$ ein $\delta>0$ mit

$$\frac{f'(t) - f'(t_0)}{t - t_0} > \varepsilon,$$

falls $|t - t_0| < \delta, t \neq t_0$. Nun ist $f'(t_0) = 0$, also folgt für $t \in B(t_0, \delta)$

$$f'(t) > 0$$
 für $t > t_0$, $f'(t) < 0$ für $t < t_0$.

Es folgt dass f streng monoton fallend links von t_0 und streng monoton wachsend rechts von t_0 ist.

7.23. Satz (Hilfssatz). Verallgemeinerter Mittelwertsatz der Differentialrechnung. Es seien $f, g : [a, b] \to \mathbb{R}$ stetig und differenzierbar in [a, b[. Dann existiert ein $\xi \in]a, b[$ mit

(1)
$$[f(b) - f(a)]g'(\xi) = [g(b) - g(a)]f'(\xi).$$

Ist zudem $g'(t) \neq 0$ für alle $t \in]a, b[$, so ist auch $g(b) - g(a) \neq 0$ (Mittelwertsatz) und

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}.$$

Beweis. Wende Satz von Rolle an auf

$$\varphi(t) = [f(b) - f(a)]g(t) - [g(b) - g(a)]f(t).$$

<1

Die folgende Regel von de l'Hospital ist ein effizientes Werkzeug zur Bestimmung von Grenzwerten.

7.24. Satz. Regel von de l'Hospital. Es seien $a,b \in \mathbb{R} \cup \{+\infty,-\infty\}, f,g:]a,b[\to \mathbb{R}$ differenzierbar und $g'(t) \neq 0$ für alle t. Ferner treffe eine der folgenden Annahmen zu:

- (i) $\lim_{t \to a^+} f(t) = \lim_{t \to a^+} g(t) = 0$ oder
- (ii) $\lim_{t\to a^+} g(t) = +\infty$ oder $\lim_{t\to a^+} g(t) = -\infty$.

Dann ist

$$\lim_{t \to a^+} \frac{f(t)}{g(t)} = \lim_{t \to a^+} \frac{f'(t)}{g'(t)},$$

falls der rechte Limes existiert oder bestimmt gegen $\pm \infty$ divergiert. Die entsprechende Aussage gilt für $t \to b^-$.

Beweis. Die prinzipielle Idee sieht man am besten im Fall (i), wenn man zusätzlich annimmt, dass $a \in \mathbb{R}$ und f und g in a differenzierbar sind und $g'(a) \neq 0$ ist. Dann ist nämlich wegen f(a) = g(a) = 0:

$$\lim_{t \to a} \frac{f(t)}{g(t)} = \lim \frac{\frac{f(t) - f(a)}{t - a}}{\frac{g(t) - g(a)}{t - a}} = \frac{f'(a)}{g'(a)}.$$

Im allgemeinen Fall ist diese Idee weniger gut sichtbar.

(a) Zunächst sei $\eta:=\lim_{t\to a^+}\frac{f'(t)}{g'(t)}\in\mathbb{R}\cup\{-\infty\}$. Wähle y_0,y_1 mit $y_0>y_1>\eta$. Dann existiert ein $t_1\in]a,b[$ mit $f'(t)/g'(t)< y_1$ für $t\in]a,t_1[$. Aus dem Satz von Rolle folgt, dass g wegen $g'(t)\neq 0$ auf $]a,t_1[$ keine zwei Nullstellen haben kann. Also können wir durch Verkleinern von t_1 annehmen, dass $g(u)\neq 0$ für u in $]a,t_1[$.

Zu u in a, t_1 existiert nach 7.22 ein ξ zwischen t und u so, dass

(1)
$$\frac{f(t) - f(u)}{g(t) - g(u)} = \frac{f'(\xi)}{g'(\xi)} < y_1.$$

(Wegen $g'(t) \neq 0$ für alle t sind beide Nenner $\neq 0$ (Satz von Rolle).)

• Gilt (i), so folgt für $t \to a^+$ wegen $g(u) \neq 0$, dass

$$\frac{f(u)}{g(u)} \le y_1.$$

³Die Schreibweise bedeutet, dass für jede Folge (t_k) in]a,b[mit $t_k \to a^+$ gilt $f(t_k) \to \infty$ bzw. $f(t_k) \to -\infty$.

 \triangleleft

• Gilt (ii), so wählen wir zu festem u ein $t_2 \in]a, u[$ mit

$$g(t) \ge \max\{0, g(u)\}$$
 bzw. $g(t) \le \min\{0, g(u)\}$ $\forall t < t_2.$ falls Grenzwert $-\infty$

In jedem Fall ist dann $\frac{g(t)-g(u)}{g(t)} > 0$. Aus (1) folgt durch Multiplikation mit $\frac{g(t)-g(u)}{g(t)}$:

$$\frac{f(t) - f(u)}{g(t)} < y_1 \frac{g(t) - g(u)}{g(t)},$$

also auch

$$\frac{f(t)}{g(t)} < y_1 - y_1 \frac{g(u)}{g(t)} + \frac{f(u)}{g(t)}.$$

Für $t \to a^+$ konvergiert die rechte Seite gegen y_1 . Also ist die rechte Seite $\leq y_0$, falls $t < t_3$ für geeignete $t_3 \in]a, t_2[$.

Wir haben gezeigt: Zu jedem $y_0 > \eta$ existiert ein t_3 mit

(2)
$$\frac{f(t)}{g(t)} \le y_0 \quad \text{für } t \in]a, t_3[.$$

Ist $\eta = -\infty$, so folgt sofort: $\lim_{t \to a^+} \frac{f(t)}{g(t)} = -\infty$.

(b) Nun sei $\eta \in \mathbb{R} \cup \{+\infty\}$. Analog wie oben zeige: Für $y_2 < \eta$ existiert ein t_4 mit

(3)
$$\frac{f(t)}{g(t)} \ge y_2 \quad \text{für } t \in]a, t_4[.$$

Ist $\eta = +\infty$, so folgt so fort: $\lim_{t\to a^+} \frac{f(t)}{g(t)} = +\infty$. Anderenfalls lie fert (2) und (3), dass

$$y_2 \le \frac{f(t)}{g(t)} \le y_0$$
 für alle $t \in]a, \min\{t_3, t_4\}[.$

Da $y_2 < \eta$ und $y_0 > \eta$ beliebig waren, folgt die Behauptung.

Wir wissen, wie man einer differenzierbaren Funktion $f:[a,b]\to\mathbb{R}$ das Vorzeichen von f' ansieht: Sie ist wachsend, falls $f'\geq 0$, fallend, falls $f'\leq 0$. Im Folgenden lernen wir, welche Auswirkung das Vorzeichen von f'' hat.

Konvexität.

7.25. Definition. Eine Funktion $f: D \to \mathbb{R}$ heißt konvex, falls für $t_1, t_2 \in D$ und $0 \le \lambda \le 1$ gilt

(1)
$$f(\lambda t_1 + (1 - \lambda)t_2) < \lambda f(t_1) + (1 - \lambda)f(t_2).$$

Geometrisch bedeutet dies, dass der Graph von f zwischen t_1 und t_2 unterhalb der Verbindungsstrecke zwischen den Punkten $(t_1, f(t_1))$ und $(t_2, f(t_2))$ verläuft.

Man nennt die Funktion konkav, falls in (1) \geq steht. Klar: f konkav $\Leftrightarrow -f$ konvex.

7.26. Satz. Es sei $f : [a, b] \to \mathbb{R}$ stetig und auf]a, b[differenzierbar. Dann gilt: f ist konvex auf [a, b] genau dann, wenn f' monoton wachsend auf]a, b[ist.

Beweis. " \Leftarrow " Es sei f' monoton wachsend und $t_1 < t_2$ in [a, b] sowie $0 < \lambda < 1$ vorgegeben. Setze $t = \lambda t_1 + (1 - \lambda)t_2$. Zu zeigen ist

$$f(t) \le \lambda f(t_1) + (1 - \lambda)f(t_2)$$

bzw.

$$\lambda f(t) + (1 - \lambda) f(t) < \lambda f(t_1) + (1 - \lambda) f(t_2)$$

bzw.

$$(1) \qquad (1-\lambda)\left(f(t)-f(t_2)\right) \le \lambda\left(f(t_1)-f(t)\right).$$

Nach dem Mittelwertsatz finden sich $\xi_1 \in]t_1, t[$ und $\xi_2 \in]t, t_2[$ so, dass

$$(f(t_1) - f(t)) = f'(\xi_1)(t_1 - t)$$
 und $(f(t) - f(t_2)) = f'(\xi_2)(t - t_2)$.

Dann ist (1) äquivalent zu

(2)
$$(1 - \lambda)f'(\xi_2)(t - t_2) \le \lambda f'(\xi_1)(t_1 - t).$$

Nun ist nach Definition $t - t_2 = \lambda(t_1 - t_2)$ und $t_1 - t = (1 - \lambda)(t_1 - t_2)$. Damit ist (2) äquivalent

$$\lambda(1-\lambda)f'(\xi_2)(t_1-t_2) \le \lambda(1-\lambda)f'(\xi_1)(t_1-t_2).$$

Da nun f' monoton und $t_1 < t_2$ ist, stimmt letzteres immer.

" \Rightarrow ". Es sei f konvex und $a < t_1 < t_2 < b$. Ist $t_1 < t < t_2$, so setze $\lambda = (t_2 - t)/(t_2 - t_1)$. Dann ist

$$\lambda t_1 + (1 - \lambda)t_2 = \frac{t_2 - t}{t_2 - t_1}t_1 + \frac{t - t_1}{t_2 - t_1}t_2 = t.$$

Die Konvexitätsbedingung liefert also

(3)
$$f(t) \le \lambda f(t_1) + (1 - \lambda)f(t_2)$$

Daraus leitet man folgende beiden Ungleichungen durch Einsetzen von λ ab:

$$\frac{f(t) - f(t_1)}{t - t_1} \le \frac{f(t_2) - f(t_1)}{t_2 - t_1} \le \frac{f(t_2) - f(t)}{t_2 - t}$$

Für $t \to t_1^+$ bzw $t \to t_2^-$ folgt

$$f'(t_1) \le \frac{f(t_2) - f(t_1)}{t_2 - t_1} \le f'(t_2).$$

 $\langle 1 \rangle$

Also ist f' monoton wachsend.

Kombination von Satz 7.21 und 7.26 liefert dann:

7.27. Folgerung. Ist $f:[a,b] \to \mathbb{R}$ stetig und auf]a,b[zweimal differenzierbar, so gilt: f ist konvex auf [a,b] genau dann, wenn $f''(t) \ge 0$ für alle $t \in]a,b[$.

7.28. Lemma. Es seien $p,q \in]1,\infty[$ mit 1/p+1/q=1. Dann gilt für alle x,y>0 die Ungleichung

$$x^{1/p}y^{1/q} \le \frac{x}{p} + \frac{y}{q}$$

Speziell für p = q = 2 erhalten wir die sog. Ungleichung zwischen dem geometrischen und dem arithmetischen Mittel:

$$\sqrt{xy} \le \frac{x+y}{2}.$$

Beweis. Wenden wir auf beide Seiten den Logarithmus an, so ist zu zeigen, dass

$$\frac{1}{p}\ln x + \frac{1}{q}\ln y \le \ln\left(\frac{1}{p}x + \frac{1}{q}y\right).$$

Nun ist l
n eine konkave Funktion, weil ln" $t = -\frac{1}{t^2} < 0$. Also gilt diese Ungleichung nach Definition (mit $\lambda = 1/p$).

 \triangleleft

7.29. Satz. Höldersche Ungleichung. Es seien $p, q \in]1, \infty[$ mit 1/p + 1/q = 1. Dann gilt für $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in \mathbb{C}^n$:

$$\sum_{j=1}^{n} |x_j y_j| \le ||x||_p ||y||_q.$$

Speziell für p=q=2 ergibt sich die Cauchy-Schwarzsche Ungleichung: $|\langle x,y\rangle| \leq ||x||_2 ||y||_2$.

Beweis. Es seien $x, y \neq 0$; sonst ist nichts zu zeigen. Setze $\tilde{x}_j = \frac{|x_j|^p}{\|x\|_p^p}$ und $\tilde{y}_j = \frac{|y_j|^q}{\|y\|_q^q}$ und wende darauf Lemma 7.28 an. Es folgt:

$$\frac{|x_j y_j|}{\|x\|_p \|y\|_q} = \tilde{x}_j^{1/p} \tilde{y}_j^{1/q} \le \frac{\tilde{x}_j}{p} + \frac{\tilde{y}_j}{q}$$

Es folgt

$$\frac{\sum |x_j y_j|}{\|x\|_p \|y\|_q} \le \frac{\sum \tilde{x}_j}{p} + \frac{\sum \tilde{y}_j}{q} = \frac{1}{p} + \frac{1}{q} = 1$$

und somit die Behauptung.

7.30. Satz. Minkowskische Ungleichung. Es sei $p \in [1, \infty[$. Dann gilt für $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \in \mathbb{C}^n$:

$$||x+y||_p \le ||x||_p + ||y||_p.$$

Bemerkung. Damit ist die noch ausstehende Dreiecksungleichung für die p-Norm bewiesen.

Beweis. Klar für p=1. Es sei also p>1 und $q=(1-\frac{1}{p})^{-1}$, so dass 1/p+1/q=1. Es sei $w_j=|x_j+y_j|^{p-1}$ und $w=(w_1,\ldots,w_n)$. Dann ist $w_j^q=|x_j+y_j|^{q(p-1)}=|x_j+y_j|^p$ und somit

$$||w||_q = ||x + y||_p^{p/q}.$$

Aus der Hölderschen Ungleichung folgt:

$$\sum |x_j + y_j| \ |w_j| \le \sum |x_j w_j| + \sum |y_j w_j| \le (\|x\|_p + \|y\|_p) \|w\|_q,$$

also nach Definition von w:

$$||x + y||_p^p \le (||x||_p + ||y||_p) ||x + y||_p^{p/q}.$$

Da $p - \frac{p}{q} = 1$ ist, sind wir fertig.