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History

Since early work in mathematical physics, starting in the 1970ties,
and initiated by A. Jaffe, and by K. Osterwalder and R. Schrader,
the subject of reflection positivity has had an increasing influ-
ence on both non-commutative harmonic analysis, and on dual-
ity theories for spectrum and geometry. In its original form, the
Osterwalder-Schrader idea served to link Euclidean field theory
to relativistic quantum field theory. It has been remarkably suc-
cessful; especially in view of the abelian property of the Euclidean
setting, contrasted with the non-commutativity of quantum fields.
Osterwalder-Schrader and reflection positivity have also become
a powerful tool in the theory of unitary representations of Lie
groups. Co-authors in this subject include G. Olafsson, and K.-
H. Neeb.



Outline

We consider reflection-positivity (Osterwalder-Schrader
positivity, O.S.-p.) as it is used in the study of renormalization
questions in physics. In concrete cases, this refers to specific
Hilbert spaces that arise before and after the reflection.
I Geometric properties connected with OS axioms
I OS.p. ⇐⇒ a triple projections (E0, E±) in a given Hilbert

space H

I Markov property
I Probabilistic counterpart: OS-positive processes



Setting

I H : a given Hilbert space;
I U, θ : H →H , unitary operators, s.t.

θ2 = IH , θ∗ = θ, and (0.1)
θUθ = U∗. (0.2)

I There exists a closed subspace H+ ⊂H s.t.

UH+ ⊂H+, and (0.3)

〈h+, θh+〉 ≥ 0, ∀h+ ∈H+. (0.4)

Note. θ = 2P − IH , where P = projection onto
{h ∈H | θh = h}.



Figure 0.1: (a) The complex plane, inside and outside of the disk.
(b) The Schottky double S of a bordered Riemann surface T with
boundary ∂T . (c) The real line, inside and outside of a fixed interval.



1. Unitary Representations of Lie Groups
with Reflection Symmetry



We consider a class of unitary representations of a Lie group G
which possess a certain reflection symmetry defined as follows.

Notation. If π is a representation of G in some Hilbert space
H, we introduce the following three structures:
1. τ ∈ Aut(G) of period 2;
2. J : H→ H is a unitary operator of period 2 such that

Jπ(g)J∗ = π(τ(g)), g ∈ G (this will hold if π is of the form
π+ ⊕ π− with π+ and π− ◦ τ unitarily equivalent); it will
further be assumed that there is a closed subspace K0 ⊂ H
which is invariant under π(H), H = Gτ , or more generally,
an open subgroup of Gτ ;

3. positivity is assumed in the sense that 〈v, J (v)〉 ≥ 0,
v ∈ K0.



Definition 1.1. A unitary representation π acting on a Hilbert
space H(π) is said to be reflection symmetric if there is a
unitary operator J : H(π)→ H(π) such that
1. J2 = id.
2. Jπ(g) = π(τ(g))J , g ∈ G.

Note. If (1) holds then π and π ◦ τ are equivalent.
Furthermore, generally from (2) we have J2π(g) = π(g)J2.
Thus, if π is irreducible, then we can always renormalize J such
that (1) holds. Let H = Gτ = {g ∈ G | τ(g) = g} and let h be
the Lie algebra of H. Then h = {X ∈ g | τ(X) = X}. Define
q = {Y ∈ g | τ(Y ) = −Y }. Then g = h⊕ q, [h, q] ⊂ q and
[q, q] ⊂ h.



Reflection Symmetry for Complementary Series

Theorem 1.2 (Jor-Ólafsson). Assume that G/H is
non-compactly causal and such that there exists a w ∈ K such
that Ad(w)|a = −1. Let πν be a complementary series such that
ν ≤ Lpos. Let C be the minimal H-invariant cone in q such that
S(C) is contained in the contraction semigroup of HPmax in
G/Pmax. Let Ω be the bounded realization of H/H ∩K in n.
Let J(f)(x) := f(τ(x)w−1). Let K0 be the closure of C∞c (Ω) in
Hν . Then the following holds:



Theorem 1.2, cont.
1. (G, τ, πν , C, J,K0) satisfies the positivity conditions

(PR1)–(PR2).
2. πν defines a contractive representation π̃ν of S(C) on K

such that π̃ν(γ)∗ = π̃ν(τ(γ)−1).
3. There exists a unitary representation π̃cν of Gc such that

(i) dπ̃cν(X) = dπ̃ν(X) ∀X ∈ h.
(ii) dπ̃cλ(iY ) = i dπ̃λ(Y ) ∀Y ∈ C.



2. Osterwalder-Schrader
Axioms-Wightman Axioms



Definition 2.1. A closed convex cone C ⊂ q is hyperbolic if
Co 6= ∅ and if adX is semisimple with real eigenvalues for every
X ∈ Co.
We will assume the following for (G, π, τ, J):
(PR1) π is reflection symmetric with reflection J ;
(PR2) there is an H-invariant hyperbolic cone C ⊂ q such

that S(C) = H expC is a closed semigroup and
S(C)o = H expCo is diffeomorphic to H × Co;

(PR3) there is a subspace 0 6= K0 ⊂ H(π) invariant under
S(C) satisfying the positivity condition

〈v, v〉J := 〈v, J (v)〉 ≥ 0, ∀v ∈ K0.



Theorem 2.2 (Jor-Ólafsson). Assume that (π,C,H, J)
satisfies (PR1)–(PR3). Then the following hold:

1. S(C) acts via s 7→ π̃(s) by contractions on K.

2. Let Gc be the simply connected Lie group with Lie algebra
gc. Then there exists a unitary representation π̃c of Gc such
that dπ̃c(X) = dπ̃(X) for X ∈ h and i dπ̃c(Y ) = dπ̃(iY ) for
Y ∈ C.

3. The representation π̃c is irreducible if and only if π̃ is
irreducible.



Definition 2.3. Let W be a G-invariant cone in g. We denote
the set of all unitary representations π of G with W ⊂W (π) by
A(W ). A unitary representation π is called W -admissible if
π ∈ A(W ).



It turns out that the irreducible representations in A(W ) are
highest weight representations. A (gc,Kc)-module is a complex
vector space V such that
1) V is a gc-module.
2) V carries a representation of Kc, and the span of Kc · v is

finite-dimensional for every v ∈ V.
3) For v ∈ V and X ∈ kc we have

X · v = lim
t→0

exp(tX) · v − v
t

.

4) For Y ∈ gc and k ∈ Kc the following holds for every v ∈ V:

k · (X · v) = (Ad(k)X) · [k · v] .



Definition 2.4. Let V be a (gc,Kc)-module. Then V is a
highest-weight module if there exists a nonzero element v ∈ V
and a λ ∈ t∗C such that

1) X · v = λ(X)v for all X ∈ t.

2) There exists a positive system ∆+ in ∆ such that
gcC(∆+) · v = 0.

3) V = U(gc) · v.
The element v is called a primitive element of weight λ.



Theorem 2.5 (Jor-Ólafsson). Let ρ ∈ A(W ) be irreducible.
Then the corresponding (gc,Kc)-module is a highest-weight
module and equals U(p−)Wλ. In particular, every weight of
VKc is of the form

ν −
∑

α∈∆(p+,tC)

nαα .

Furthermore, 〈ν,Hα〉 ≤ 0 for all α ∈ ∆+
p .



3. Reflection Positive Stochastic
Processes Indexed by Lie Groups



Definition 3.1. A reflection positive Hilbert space is a triple
(E , E+, θ), where E is a Hilbert space, θ a unitary involution and
E+ a closed subspace which is θ-positive in the sense that the
hermitian form 〈v, w〉θ := 〈θv, w〉 is positive semidefinite on E+.
For a reflection positive Hilbert space (E , E+, θ), let

N := {u ∈ E+ : 〈θu, u〉 = 0}

and let Ê be the completion of E+/N with respect to the inner
product 〈·, ·〉θ. Let q : E+ → Ê , v 7→ q(v) = v̂ be the canonical
map. Then

Eθ+ := {v ∈ E+ : θv = v}

is the maximal subspace of E+ on which q is isometric.



Definition 3.2. Let (E , E+, θ) be a reflection positive Hilbert
space. If E0 ⊆ Eθ+ is a closed subspace, E− := θ(E+), and E0, E±
the orthogonal projections onto E0 and E±, then we say that
(E , E0, E+, θ) is of Markov type if

E+E0E− = E+E−. (3.1)



Proposition 3.3. Let (Ug)g∈G be a reflection positive unitary
representation of (G,S, τ) on (E , E+, θ), let E0 ⊆ (E+)θ be a
subspace and Γ = q|E0 : E0 → Ê . If (E , E0, E+, θ) is of Markov
type, then the following assertions hold:
(i) The reflection positive function ϕ : G→ B(E0),

ϕ(g) := E0UgE0, is multiplicative on S.
(ii) ϕ(s) = Γ∗ÛsΓ for s ∈ S, i.e., Γ intertwines ϕ

∣∣
S
with Û .



Reconstruction Theorem

Theorem 3.4 (Jorgensen, Neeb, Ólafsson). Let (G, τ) be
a symmetric Lie group and S ⊆ G be a ]-invariant subsemigroup
satisfying G = S ∪ S−1. Then every positive semigroup
structure for (G,S, τ) is associated to some (G,S, τ)-probability
space ((Q,Σ, µ),Σ0, U, θ).



Standard path space structures for locally
compact groups

Theorem 3.5 (Jorgensen, Neeb, Ólafsson). Suppose that
Q is a second countable locally compact group. Let µ be the
measure on QR corresponding to the symmetric convolution
semigroup (µt)t≥0 of probability measures on Q and the
measure ν on Q for which the operators Ptf = f ∗ µt define a
positive semigroup structure on L2(Q, ν). Then the translation
action (Utω)(s) := ω(s− t) on P (Q) = QR is measure preserving
and µ is invariant under (θω)(t) := ω(−t).



Theorem 3.5, cont.
We thus obtain a reflection positive one-parameter group of
Markov type on E := L2(P (Q),BR, µ) with respect to
I E+ := L2(P (Q),BR+ , µ), for which
I E0 := ev∗0(L2(Q, ν)) ∼= L2(Q, ν) and
I Ê ∼= L2(Q, ν) with q(F ) = E0F for F ∈ E+.

We further have

E0UtE0 = Pt holds for Ptf = f ∗ µt,

so that the U -cyclic subrepresentation generated by E0 is a
unitary dilation of the hermitian one-parameter semigroup
(Pt)t≥0 on L2(Q, ν).



4. Reflection Positivity and Spectral
Theory



Our focus is a comparative study of the associated spectral
theory, now referring to the canonical operators in these two
Hilbert spaces. Indeed, the inner product which produces the
respective Hilbert spaces of quantum states changes, and
comparisons are subtle.



H
θUθ=U∗

U //H unitary U⋃ ⋃
H+

q

��

U

��

H+

q

��

invariant under U
〈h+, θh+〉 ≥ 0

K = (H+/N )∼

Ũ

99
Ũ K = (H+/N )∼

induced operator
θ-normalized
inner product

Ũ is contractive
and selfadjoint

Figure 4.1: Reflection positivity. A unitary operator U transforms
into a selfadjoint contraction Ũ .



An example ([JO98, JO00])

Let 0 < s < 1 be given, and let H = Hs be the Hilbert space
whose norm ‖f‖s is given by

‖f‖2s =

∫
R

∫
R
f (x) |x− y|s−1 f (y) dxdy. (4.1)

Let a ∈ R+ be given, and set

(U (a) f) (x) = as+1f
(
a2x
)
. (4.2)

Let H+ be the closure of Cc (−1, 1) in Hs relative to the norm
‖·‖s. It is then immediate that U (a), for a > 1, leaves H+

invariant, i.e., it restricts to a semigroup of isometries
{U (a) ; a > 1} acting on Ks.



Setting

(θf) (x) = |x|−s−1 f

(
1

x

)
, x ∈ R \ {0} , (4.3)

we check that θ is then a period-2 unitary in Hs, and that

θU (a) θ = U (a)∗ = U
(
a−1
)

(4.4)

and
〈f, θf〉Hs

≥ 0, ∀f ∈H+, (4.5)

where 〈·, ·〉Hs
is the inner product

〈f1, f2〉Hs
:=

∫
R

∫
R
f1 (x) |x− y|s−1 f2 (y) dxdy. (4.6)



In fact, if f ∈ Cc (−1, 1), the expression in (4.5) works out as
the following reproducing kernel integral:∫ 1

−1

∫ 1

−1
f (x) (1− xy)s−1 f (y) dxdy. (4.7)

Hence up to a constant, the norm ‖ · ‖s of (4.6) may be
rewritten as ∫

R
|ξ|−s

∣∣∣f̂ (ξ)
∣∣∣2 dξ, (4.8)

and the inner product 〈 · , · 〉s as∫
R
|ξ|−s f̂1 (ξ)f̂2 (ξ) dξ. (4.9)



Intuitively, Hs consists of functions on R which arise as
(
d
dx

)s
fs

for some fs in L2 (R). This also introduces a degree of
“non-locality” into the theory, and the functions in Hs cannot
be viewed as locally integrable, although Hs for each s,
0 < s < 1, contains Cc (R) as a dense subspace. In fact, formula
(4.8), for the norm in Hs, makes precise in which sense elements
of Hs are “fractional” derivatives of locally integrable functions
on R, and that there are elements of Hs (and of Ks) which are
not locally integrable.



Conclusion: When H+ and K are as in (4.7), then the natural
contractive operator q, defined as q (h+) = class (h+) = h+ + N ,
is automatically 1-1, i.e., its kernel is 0.

H+
//

q

))
H+/N // (H+/N )∼ = K (4.10)



Maximal Reflections

Definition 4.1. Let H be a Hilbert space and θ a reflection on
H . Let P = proj {x ∈H ; θx = x}, so that θ = 2P − IH . Set

SubOS (θ) = {E+ ; E+ is a projection in H s.t. E+θE+ ≥ 0} .
(4.11)

Note. As usual properties for projections have equivalent
formulation for closed subspaces: In this case, we may identify
elements in SubOS (θ) with closed subspaces H+ such that

〈h+, θh+〉 ≥ 0, for ∀h+ ∈H+. (4.12)

Set H+ := E+H .



Theorem 4.2 (Jor-Tian). Let H , θ, and P be as stated,
and consider the corresponding SubOS (θ) as in (4.11), or
equivalently (4.12).
Then SubOS (θ) is an ordered lattice of projections, and it has
the following family of maximal elements: Let
C : PH −→ P⊥H be a contractive operator, and set

H+ (P,C) := {x+ Cx ; x ∈ PH } . (4.13)

Then H+ (P,C) is maximal in SubOS (θ), and every maximal
element in SubOS (θ) has this form for some contraction
C : PH → P⊥H .



Theorem 4.3 (Jor-Tian). Let H , H±, θ, and U be as
above, i.e., we are assuming O.S.-positivity; and further that U
satisfies

θUθ = U∗; and (4.14)
UH+ ⊆H+ (equivalently, E+UE+ = UE+.) (4.15)

Let P be the projection onto {h ∈H ; θh = h}, i.e., we have
θ = 2P − IH .



Theorem 4.3, cont.

1. Then
PUE+ = PU∗θE+. (4.16)

2. If C : PH −→ P⊥H denotes the corresponding
contraction, then there is a unique operator
UP : PH −→ PH such that UP = PUP ; and, if
h+ = x+ Cx, x ∈ PH , then∥∥∥Ũq (h+)

∥∥∥2

K
= ‖UPx‖2H − ‖CUPx‖

2
H . (4.17)

3. In particular, we have

‖UPx‖2H − ‖CUPx‖
2
H ≤ ‖x‖

2
H − ‖Cx‖

2
H , ∀x ∈ PH .



Markov vs O.-S. positivity

Definition 4.4. If E0, E± are projections in H , let
ε = (E0, E±), and set

E (Markov) := {(E0, E±) ; E+E0E− = E+E−} , (4.18)
R (ε) :=

{
θ ∈ Ref (H ) ; θE0 = E0, (4.19)
θE+ = E−θE+, θE− = E+θE−

}
.

Fix θ ∈ Ref (H ), so that θ2 = IH , θ∗ = θ, set:

E (θ) := {(E0, E±) ; θE0 = E0, θE+ = E−θE+, θE− = E+θE−} .
(4.20)



Question. Let ε = (E0, E±) be given, and suppose E+θE+ ≥ 0
for all θ ∈ Ref (H ), then does it follow that E+E0E− = E+E−
holds?

Theorem 4.5. Given an infinite-dimensional complex Hilbert
space H , let the setting be as above, i.e., reflections, Markov
property, and O.S.-positivity defined as stated. Then⋂

θ∈Ref(H )

EOS (θ) = E (Markov) . (4.21)



Markov processes and Markov reflection
positivity

The axioms for the system are as follows:
1. θE0 = E0;
2. E+θE− = θE−;
3. E−θE+ = θE+;
4. the O.S.-positivity holds, i.e.,

E+θE+ ≥ 0; (4.22)

5. θUθ = U∗, or θU (g) θ = U(g−1).



Setting
It is further assumed that, for some subgroup S ⊂ G, we have
U (s) H+ ⊂H+, ∀s ∈ S; or equivalently,

E+U (s)E+ = U (s)E+, s ∈ S. (4.23)

It is shown above that the additional Markov-restriction

E+E0E− = E+E− (4.24)

is “very” strong. Moreover, if θ is fixed, then (4.24) =⇒ (4.22).
Proof Sketch: Assume (4.24), then

E+θE+ = E+E−θE+

= E+E0E−θE+ = E+E0θ︸ ︷︷ ︸
=E0

E+

= E+E0E+ ≥ 0,

so (4.22) holds (with additional information about the OS
operator E+θE+.)



Covariance operator

I V : a LCTVS, locally convex topological vector space.
I G: a Lie group.
I U : a unitary representation of G.
I Let {ψv,g}(v,g)∈V×G be a real valued stochastic process s.t.
ψv,g ∈H = L2 (Ω,F ,P), and

E (ψv,g) = 0, (v, g) ∈ V ×G. (4.25)

I Further assume that a reflection θ is given, and that

θ (ψv,g) = ψv,g−1 , (v, g) ∈ V ×G. (4.26)



Definition 4.6. Let (vi, gi), i = 1, 2, be given, and set

E (ψv1,g1ψv2,g2) = 〈v1, r (g1, g2) v2〉 (4.27)

where 〈·, ·〉 is a fixed positive definite Hermitian inner product
on V .
Hence (4.27) determines a function r on G×G; it is operator
valued, taking values in operators in V . This function is called
the covariance operator.



Two specializations:
1. G = R, S = R+ ∪ {0} = [0,∞), and
2. the process is stationary:

E (ψv1,t1ψv2,t2) = 〈v1, r (t1 − t2) v2〉 , (4.28)

∀t1, t2 ∈ R, ∀v1, v2 ∈ V .



Theorem 4.7 (A. Klein [Kle77]). Let the stationary
stochastic process {ψv,t}, (v, t) ∈ V × R, be as specified above,
and let {r (t)}t∈R be the covariance operator. Set
θ (ψv,t) := ψv,−t, t ∈ R. Assume 〈ψ+, θψ+〉 ≥ 0, ∀ψ+ ∈H+,
then for ∀n ∈ N, ∀ {vi}ni=1 ⊂ V , ∀ {ti}ni=1 ⊂ R+ ∪ {0}, we have∑

i

∑
j

〈vi, r (ti + tj) vj〉 ≥ 0; (4.29)

which is the O.S.-positivity condition.



Theorem 4.8 (A. Klein, continued). Moreover, the
Markov property E+E0E− = E+E− holds iff r (·) is a
semigroup, i.e., r (t+ s) = r (t) r (s), for ∀s, t ∈ [0,∞).
In particular, in the case of stationary processes, when
O.S.-positivity is assumed, then two conditions hold:
1. the covariance function r (·) is positive definite:∑

i

∑
j

〈vi, r (ti − tj) vj〉 ≥ 0; and

2. condition (4.29) holds as well, i.e.,∑
i

∑
j

〈vi, r (ti + tj) vj〉 ≥ 0.



Remark 4.9. In the scalar case, a list of stationary positive
definite, and Gaussian O.S.-positive, covariance functions
{r (t)}t∈R includes:
I e−a|t|, a > 0, fixed;

I
1− e−b|t|

b |t|
, b > 0, fixed;

I
1

1 + |t|
;

I
1√

1 + |t|
e
− |t|

1+|t| , t ∈ R.

Only r (t) := e−a|t| is also the generator of a Markov system; it
is the Ornstein-Uhlenbeck process.



Corollary 4.10. Let {ψv,t} be as specified above,
θ ψv,t = ψv,−t, and assume O.S.-p holds. Let K denote the
Hilbert completion of span {ψv,t ; t ≥ 0} with respect to the
induced inner product from (4.29). Then a selfadjoint and
contractive semigroup {R (s) ; s ≥ 0} is well defined by
R (s)ψv,t := ψv,t+s; i.e., {R (s)}s≥0 is a selfadjoint contractive
semigroup of operators in K , R (s+ s′) = R (s)R (s′).

Proof. Note that

〈R (s)ψv1,t1 , ψv2,t2〉K = 〈ψv1,t1 , R (s)ψv2,t2〉K
= 〈v1, r (t1 + t2 + s) v2〉V .
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