Operator algebras on locally compact abelian groups

Raffael Hagger

Kiel University Christian-Albrechts-Universität zu Kiel

Workshop on Quantum Harmonic Analysis, August 5, 2024

Joint work with Robert Fulsche.

イロメ イ押 メイヨメ イヨメ

B

$$
A: L^2(G) \to L^2(G), \quad (Af)(x) := \int_G k(x, y) f(y) dy.
$$

Questions:

- When is this integral operator compact?
- When is this integral operator Fredholm?
- What is the essential spectrum of A ?

4 何 8

 $A \supseteq A \supseteq A$

 Ω

$$
A: L^2(G) \to L^2(G), \quad (Af)(x) := \int_G k(x, y) f(y) dy.
$$

Questions:

- When is this integral operator compact?
- When is this integral operator Fredholm?
- What is the essential spectrum of A ?

 $2Q$

A BAKE

$$
A: L^2(G) \to L^2(G), \quad (Af)(x) := \int_G k(x, y) f(y) dy.
$$

Questions:

- When is this integral operator compact?
- When is this integral operator Fredholm?
- What is the essential spectrum of A ?

 $2Q$

A BAKE

$$
A: L^2(G) \to L^2(G), \quad (Af)(x) := \int_G k(x, y) f(y) dy.
$$

Questions:

- When is this integral operator compact?
- When is this integral operator Fredholm?
- What is the essential spectrum of A ?

 $G:=\mathbb{Z}$, i.e. $L^2(G)=\ell^2(\mathbb{Z})$ $A\colon \ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z})$ can be described by

$$
(Af)_j = \sum_{k \in \mathbb{Z}} A_{jk} f_k,
$$

that is,

ă

- 4 周 メ イ 周

\n- $$
G := \mathbb{Z}
$$
, i.e. $L^2(G) = \ell^2(\mathbb{Z})$
\n- $A: \ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z})$ can be described by
\n

$$
(Af)_j = \sum_{k \in \mathbb{Z}} A_{jk} f_k,
$$

that is,

$$
A = \left(\begin{array}{cccccc}\n\ddots & \vdots & \vdots & \vdots & \vdots \\
\cdots & A_{-1-1} & A_{-10} & A_{-11} & \cdots \\
\cdots & A_{0-1} & A_{00} & A_{01} & \cdots \\
\cdots & A_{1-1} & A_{10} & A_{11} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots\n\end{array}\right)
$$

.

K ロラ K 倒 ト K 差 ト K 差 ト

 290

重

\bullet band operators ($BO(\mathbb{Z})$): finitely many non-zero diagonals

- band-dominated operators (BDO(\mathbb{Z})): closure of BO(\mathbb{Z}) w.r.t. $\left\Vert \cdot\right\Vert _{\mathcal{L}\left(\ell^{2}\left(\mathbb{Z}\right) \right) }$
- $\mathrm{BDO}(\mathbb{Z})$ is a C^* -algebra that contains all compact operators

 \equiv

 $2Q$

K 何 ▶ K ヨ ▶ K ヨ ▶

- \bullet band operators ($BO(\mathbb{Z})$): finitely many non-zero diagonals
- band-dominated operators $(BDO(\mathbb{Z}))$: closure of $BO(\mathbb{Z})$ w.r.t. $\left\|\cdot\right\|_{\mathcal{L}(\ell^2({\mathbb Z}))}$
- $\mathrm{BDO}(\mathbb{Z})$ is a C^* -algebra that contains all compact operators

 \equiv

 $2Q$

K 何 ▶ K ヨ ▶ K ヨ ▶ ...

- \bullet band operators ($BO(\mathbb{Z})$): finitely many non-zero diagonals
- band-dominated operators ($BDO(\mathbb{Z})$): closure of $BO(\mathbb{Z})$ w.r.t. $\left\|\cdot\right\|_{\mathcal{L}(\ell^2({\mathbb Z}))}$
- $\mathrm{BDO}(\mathbb{Z})$ is a C^* -algebra that contains all compact operators

イ押 トメミ トメミ トーミ

$$
A = \begin{pmatrix}\n\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\cdots & A_{-2-2} & A_{-2-1} & A_{-20} & A_{-21} & A_{-22} & \cdots \\
\cdots & A_{-1-2} & A_{-1-1} & A_{-10} & A_{-11} & A_{-12} & \cdots \\
\cdots & A_{0-2} & A_{0-1} & A_{00} & A_{01} & A_{02} & \cdots \\
\cdots & A_{1-2} & A_{1-1} & A_{10} & A_{11} & A_{12} & \cdots \\
\cdots & A_{2-2} & A_{2-1} & A_{20} & A_{21} & A_{22} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots\n\end{pmatrix}
$$

Raffael Hagger **[Operator algebras on locally compact abelian groups](#page-0-0)**

イロト イ団 トイミト イミト

 \equiv 990

$$
A + K = \begin{pmatrix} \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \dots & A_{-2-2} & A_{-2-1} & A_{-20} & A_{-21} & A_{-22} & \dots \\ \dots & A_{-1-2} & A_{-1-1} & A_{-10} & A_{-12} & \dots \\ \dots & A_{0-2} & A_{0-1} & A_{00} & A_{01} & A_{02} & \dots \\ \dots & A_{1-2} & A_{1-1} & A_{10} & A_{11} & A_{12} & \dots \\ \dots & A_{2-2} & A_{2-1} & A_{20} & A_{21} & A_{22} & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}
$$

 $A \Longleftrightarrow A + K$ compact and $sp_{\text{ess}}(A) = sp_{\text{ess}}(A + K)$

4.000.00 \leftarrow \leftarrow \leftarrow

 $A\cong A\rightarrow A\cong A$

$$
A + K = \begin{pmatrix} \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \dots & A_{-2-2} & A_{-2-1} & A_{-20} & A_{-21} & A_{-22} & \dots \\ \dots & A_{-1-2} & A_{-1-1} & A_{-10} & A_{-12} & \dots \\ \dots & A_{0-2} & A_{0-1} & A_{00} & A_{01} & A_{02} & \dots \\ \dots & A_{1-2} & A_{1-1} & A_{20} & A_{21} & A_{22} & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix}
$$

 $A \Longleftrightarrow A + K$ compact and $sp_{\text{ess}}(A) = sp_{\text{ess}}(A + K)$

4.000.00 \leftarrow \leftarrow \leftarrow

 $A\cong A\rightarrow A\cong A$

. A−2−² A−2−¹ A−²⁰ A−²¹ A−²² A−1−² A−¹² . . . A + K = . . . A0−² A⁰² A1−² A¹² A2−² A2−¹ A²⁰ A²¹ A²² .

 $A \Longleftrightarrow A + K$ compact and $sp_{\text{ess}}(A) = sp_{\text{ess}}(A + K)$

4.000.00 \leftarrow \leftarrow \leftarrow

 $A\cong A\rightarrow A\cong A$

$$
A + K = \begin{pmatrix} \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \dots & A_{-2-2} & A_{-2-1} & A_{-20} & A_{-21} & A_{-22} & \dots \\ \dots & A_{-1-2} & & & & A_{-12} & \dots \\ \dots & A_{1-2} & & & & A_{20} & A_{21} & A_{22} & \dots \\ & & & & & \vdots & \vdots & \vdots & \vdots \end{pmatrix}
$$

 $A \Longleftrightarrow A + K$ compact and $sp_{\text{ess}}(A) = sp_{\text{ess}}(A + K)$

4 0 8

4 间 × ÷.

医电子 化重子

 299

$$
A \in \text{BDO}(\mathbb{Z})
$$

$$
A = \begin{pmatrix}\n\ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\cdots & A_{-2-2} & A_{-2-1} & A_{-20} & A_{-21} & A_{-22} & \cdots \\
\cdots & A_{-1-2} & A_{-1-1} & A_{-10} & A_{-11} & A_{-12} & \cdots \\
\cdots & A_{0-2} & A_{0-1} & A_{00} & A_{01} & A_{02} & \cdots \\
\cdots & A_{1-2} & A_{1-1} & A_{10} & A_{11} & A_{12} & \cdots \\
\cdots & A_{2-2} & A_{2-1} & A_{20} & A_{21} & A_{22} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots\n\end{pmatrix}
$$

K ロ > K 御 > K ミ > K ミ > 「ミ → の Q (V)

$$
V^{-1}AV = \begin{pmatrix} \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \dots & A_{-1-1} & A_{-10} & A_{-11} & A_{-12} & A_{-13} & \dots \\ \dots & A_{0-1} & A_{00} & A_{01} & A_{02} & A_{03} & \dots \\ \dots & A_{1-1} & A_{10} & A_{11} & A_{12} & A_{13} & \dots \\ \dots & A_{2-1} & A_{20} & A_{21} & A_{22} & A_{23} & \dots \\ \dots & A_{3-1} & A_{30} & A_{31} & A_{32} & A_{33} & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}
$$

K ロラ K 倒 ト K 差 ト K 差 ト

 2990

$$
V^{-2}AV^2 = \begin{pmatrix}\n\vdots & \vdots & \vdots & \vdots & \vdots \\
\cdots & A_{00} & A_{01} & A_{02} & A_{03} & A_{04} & \cdots \\
\cdots & A_{10} & A_{11} & A_{12} & A_{13} & A_{14} & \cdots \\
\cdots & A_{20} & A_{21} & A_{22} & A_{23} & A_{24} & \cdots \\
\cdots & A_{30} & A_{31} & A_{32} & A_{33} & A_{34} & \cdots \\
\cdots & A_{40} & A_{41} & A_{42} & A_{43} & A_{44} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots\n\end{pmatrix}
$$

イロト イ団 トイミト イミト

 \equiv 990

$$
V^{-5}AV^{5} = \begin{pmatrix}\n\vdots & \vdots & \vdots & \vdots & \vdots \\
\ldots & A_{33} & A_{34} & A_{35} & A_{36} & A_{37} & \ldots \\
\ldots & A_{43} & A_{44} & A_{45} & A_{46} & A_{47} & \ldots \\
\ldots & A_{53} & A_{54} & A_{55} & A_{56} & A_{57} & \ldots \\
\ldots & A_{63} & A_{64} & A_{65} & A_{66} & A_{67} & \ldots \\
\ldots & A_{73} & A_{74} & A_{75} & A_{76} & A_{77} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots\n\end{pmatrix}
$$

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶ ...

 \equiv 990

$$
B = \begin{pmatrix}\n\vdots & \vdots & \vdots & \vdots & \vdots \\
\ldots & B_{-2-2} & B_{-2-1} & B_{-20} & B_{-21} & B_{-22} \\
\ldots & B_{-1-2} & B_{-1-1} & B_{-10} & B_{-11} & B_{-12} \\
\ldots & B_{0-2} & B_{0-1} & B_{00} & B_{01} & B_{02} & \ldots \\
\ldots & B_{1-2} & B_{1-1} & B_{10} & B_{11} & B_{12} & \ldots \\
\ldots & B_{2-2} & B_{2-1} & B_{20} & B_{21} & B_{22} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots\n\end{pmatrix}
$$

 $A_h f := B f = \lim_{n \to \infty} V^{-h_n}AV^{h_n}f$ (if it exists for all $f \in \ell^2({\mathbb Z})$)

KO KA KE KA BIKI BIKI YA K

 $\alpha.(A): \mathbb{Z} \rightarrow \mathcal{L}(\ell^2(\mathbb{Z})), \, \alpha_n(A):=V^{-n}AV^n$ can be extended to a strongly continuous map on βZ.

 $A\colon \ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z})$ is compact if and only if $A \in \mathrm{BDO}(\mathbb{Z})$ and $\alpha_r(A) = 0$ for all $x \in \beta \mathbb{Z} \setminus \mathbb{Z}$.

Let A ∈ BDO(Z)*.* A *is Fredholm if and only all of its limit operators* $\alpha_x(A)$, $x \in \beta \mathbb{Z} \setminus \mathbb{Z}$, are invertible. Moreover,

$$
\mathrm{sp}_{\mathrm{ess}}(A) = \bigcup_{x \in \beta \mathbb{Z} \setminus \mathbb{Z}} \mathrm{sp}(\alpha_x(A)).
$$

K 何 ▶ K ヨ ▶ K ヨ

つへへ

 $\alpha.(A): \mathbb{Z} \rightarrow \mathcal{L}(\ell^2(\mathbb{Z})), \, \alpha_n(A):=V^{-n}AV^n$ can be extended to a strongly continuous map on βZ.

Theorem

 $A\colon \ell^2(\mathbb{Z})\to \ell^2(\mathbb{Z})$ is compact if and only if $A\in \mathrm{BDO}(\mathbb{Z})$ and $\alpha_x(A) = 0$ for all $x \in \beta \mathbb{Z} \setminus \mathbb{Z}$.

Let A ∈ BDO(Z)*.* A *is Fredholm if and only all of its limit operators* $\alpha_x(A)$, $x \in \beta \mathbb{Z} \setminus \mathbb{Z}$, are invertible. Moreover,

$$
\mathrm{sp}_{\mathrm{ess}}(A) = \bigcup_{x \in \beta \mathbb{Z} \setminus \mathbb{Z}} \mathrm{sp}(\alpha_x(A)).
$$

K ロ ⊁ K 伊 ⊁ K ヨ ⊁ K ヨ

つへへ

 $\alpha.(A): \mathbb{Z} \rightarrow \mathcal{L}(\ell^2(\mathbb{Z})), \, \alpha_n(A):=V^{-n}AV^n$ can be extended to a strongly continuous map on $\beta \mathbb{Z}$.

Theorem

 $A\colon \ell^2(\mathbb{Z})\to \ell^2(\mathbb{Z})$ is compact if and only if $A\in \mathrm{BDO}(\mathbb{Z})$ and $\alpha_x(A) = 0$ for all $x \in \beta \mathbb{Z} \setminus \mathbb{Z}$.

Theorem (Lindner/Seidel 2014, Lange/Rabinovich 1985)

Let A ∈ BDO(Z)*.* A *is Fredholm if and only all of its limit operators* $\alpha_x(A)$, $x \in \beta \mathbb{Z} \setminus \mathbb{Z}$, are invertible. Moreover,

$$
\mathrm{sp}_{\mathrm{ess}}(A) = \bigcup_{x \in \beta \mathbb{Z} \setminus \mathbb{Z}} \mathrm{sp}(\alpha_x(A)).
$$

イロメ イ押 メイヨメ イヨメ

Þ

つへへ

- \bullet band operators ($BO(\mathbb{Z})$): finitely many non-zero diagonals
- band-dominated operators (BDO(\mathbb{Z})): closure of BO(\mathbb{Z}) w.r.t. $\left\Vert \cdot\right\Vert _{\mathcal{L}\left(\ell^{2}\left(\mathbb{Z}\right) \right) }$
- $\text{BDO}(\mathbb{Z})$ is a C^* -algebra that contains all compact operators

 $2Q$

A BAKE

- \bullet band operators ($BO(\mathbb{Z})$): finitely many non-zero diagonals
- band-dominated operators (BDO(\mathbb{Z})): closure of BO(\mathbb{Z}) w.r.t. $\left\Vert \cdot\right\Vert _{\mathcal{L}\left(\ell^{2}\left(\mathbb{Z}\right) \right) }$
- $\text{BDO}(\mathbb{Z})$ is a C^* -algebra that contains all compact operators

∢ 何 ▶ ((ヨ ▶ (ヨ) |

• band operators (BO(R)): $k(x, y) = 0$ for $|x - y| > \omega$

- \bullet band-dominated operators (BDO(R)): closure of BO(R) w.r.t. $\left\|\cdot\right\|_{\mathcal{L}(L^2(\mathbb{R}))}$
- $\text{BDO}(\mathbb{R})$ is a C^* -algebra that contains all compact operators

K 何 ▶ K ヨ ▶ K ヨ ▶

• band operators (BO(R)): $k(x, y) = 0$ for $|x - y| > \omega$

- band-dominated operators (BDO(\mathbb{R})): closure of BO(\mathbb{R}) w.r.t. $\left\|\cdot\right\|_{\mathcal{L}(L^2(\mathbb{R}))}$
- $\text{BDO}(\mathbb{R})$ is a C^* -algebra that contains all compact operators

K 何 ▶ K ヨ ▶ K ヨ ▶ ...

B

• band operators (BO(R)): $k(x, y) = 0$ for $|x - y| > \omega$

- band-dominated operators (BDO(\mathbb{R})): closure of BO(\mathbb{R}) w.r.t. $\left\|\cdot\right\|_{\mathcal{L}(L^2(\mathbb{R}))}$
- $\text{BDO}(\mathbb{R})$ is a C^* -algebra that contains all compact operators

◆ ロ ▶ → 伊 ▶ → ヨ ▶ → ヨ ▶ → ヨ

• Problem 1: Λ is not necessarily compact if k has compact support.

• Problem 2: Even for multiplication operators, limit operators may not exist, e.g.,

$$
f(x) := (-1)^{\lfloor x \rfloor}.
$$

Then $(V_{-\sqrt{2}n} M_f V_{\sqrt{2}n})_{n\in \mathbb{N}}$ does not have a strongly convergent subsequence.

K ロ ト K 何 ト K ヨ ト K ヨ ト

- Problem 1: A is not necessarily compact if k has compact support.
- Problem 2: Even for multiplication operators, limit operators may not exist, e.g.,

$$
f(x) := (-1)^{\lfloor x \rfloor}.
$$

Then $(V_{-\sqrt{2}n} M_f V_{\sqrt{2}n})_{n\in\mathbb{N}}$ does not have a strongly convergent subsequence.

≮ロ ▶ ⊀ 御 ▶ ⊀ ヨ ▶ ⊀ ヨ ▶

B

K ロ > K @ > K 통 > K 통 > 1 통 1 9 Q @

$L^2(\mathbb{R}) \cong \ell^2(\mathbb{Z}, L^2([0,1)))$

 $\Rightarrow A \in \text{BDO}(\mathbb{R})$ is invertible modulo $\mathcal{K}(L^2(\mathbb{R}), \mathcal{P})$ if and only if all limit operators of A are invertible.^{*}

 \leftarrow

×

 290

$L^2(\mathbb{R}) \cong \ell^2(\mathbb{Z}, L^2([0,1)))$

 $\implies A \in \text{BDO}(\mathbb{R})$ is invertible modulo $\mathcal{K}(L^2(\mathbb{R}), \mathcal{P})$ if and only if all limit operators of A are invertible.[∗]

Let Ξ be a locally compact abelian group and

$$
U_{\cdot} : \Xi \to \mathcal{L}(\mathcal{H}), \quad \xi \mapsto U_{\xi}
$$

a strongly continuous, unitary, projective representation, i.e.,

$$
U_{\xi}U_{\rho} = m(\xi, \rho)U_{\xi\rho}.
$$

For $\Xi := G \times \widehat{G}$ we may choose $\mathcal{H} = L^2(G)$ and

$$
U_{g,\chi}f(h) = \chi(h)f(g^{-1}h).
$$

For example, if $\Xi = \mathbb{Z} \times \mathbb{T}$, then

$$
U_{n,t}f(m) = t^m f(m - n)
$$

for $f \in \ell^2(\mathbb{Z}), m, n \in \mathbb{Z}, t \in \mathbb{T}$.

 \sqrt{m} \rightarrow \sqrt{m} \rightarrow \sqrt{m}

Let Ξ be a locally compact abelian group and

$$
U_{\cdot} : \Xi \to \mathcal{L}(\mathcal{H}), \quad \xi \mapsto U_{\xi}
$$

a strongly continuous, unitary, projective representation, i.e.,

$$
U_{\xi}U_{\rho} = m(\xi, \rho)U_{\xi\rho}.
$$

For $\Xi := G \times \widehat{G}$ we may choose $\mathcal{H} = L^2(G)$ and

$$
U_{g,\chi}f(h) = \chi(h)f(g^{-1}h).
$$

For example, if $\Xi = \mathbb{Z} \times \mathbb{T}$, then

$$
U_{n,t}f(m) = t^m f(m - n)
$$

for $f \in \ell^2(\mathbb{Z}), m, n \in \mathbb{Z}, t \in \mathbb{T}$.

4 何 ト 4 三 ト 4

Let Ξ be a locally compact abelian group and

$$
U_{\cdot} : \Xi \to \mathcal{L}(\mathcal{H}), \quad \xi \mapsto U_{\xi}
$$

a strongly continuous, unitary, projective representation, i.e.,

$$
U_{\xi}U_{\rho} = m(\xi, \rho)U_{\xi\rho}.
$$

For $\Xi := G \times \widehat{G}$ we may choose $\mathcal{H} = L^2(G)$ and

$$
U_{g,\chi}f(h) = \chi(h)f(g^{-1}h).
$$

For example, if $\Xi = \mathbb{Z} \times \mathbb{T}$, then

$$
U_{n,t}f(m) = t^m f(m - n)
$$

for $f \in \ell^2(\mathbb{Z}), m, n \in \mathbb{Z}, t \in \mathbb{T}$.

4 何 ト 4 三 ト 4

 QQ
Let Ξ be a locally compact abelian group and

$$
U_{\cdot} : \Xi \to \mathcal{L}(\mathcal{H}), \quad \xi \mapsto U_{\xi}
$$

a strongly continuous, unitary, projective representation, i.e.,

$$
U_{\xi}U_{\rho} = m(\xi, \rho)U_{\xi\rho}.
$$

For $\Xi := G \times \widehat{G}$ we may choose $\mathcal{H} = L^2(G)$ and

$$
U_{g,\chi}f(h) = \chi(h)f(g^{-1}h).
$$

For example, if $\Xi = \mathbb{R} \times \mathbb{R}$, then

$$
U_{x,t}f(y) = e^{iyt}f(y-x)
$$

for $f \in L^2(\mathbb{R}), x, y, t \in \mathbb{R}$.

Þ QQQ

∢ 何 ゝ ∢ ヨ ゝ ∢ ヨ ゝ

Let $\mathcal{C}_1(G):=\big\{A\in\mathcal{L}(L^2(G)):z\mapsto\alpha_z(A) \text{ continuous}\big\}.$

Let $A \in C_1(G)$ *. Then the map*

 $\alpha: G \times \widehat{G} \to \mathcal{L}(L^2(G)), \quad \alpha_z(A) := U_z A U_z^*$

extends to a strongly continuous map on M*.*

Here M denotes the maximal ideal space of BUC($G \times \widehat{G}$), which was defined in Robert's talk.

Let $A \in C_1(G)$. A *is Fredholm if and only if* $\alpha_z(A)$ *is invertible for every* $z \in M \setminus (G \times G)$ *(and the inverses are uniformly bdd).*

K ロ ト K 何 ト K ヨ ト K ヨ

Let $\mathcal{C}_1(G):=\big\{A\in\mathcal{L}(L^2(G)):z\mapsto\alpha_z(A) \text{ continuous}\big\}.$

Proposition

Let $A \in C_1(G)$ *. Then the map*

$$
\alpha: G \times \widehat{G} \to \mathcal{L}(L^2(G)), \quad \alpha_z(A) := U_z A U_z^*
$$

extends to a strongly continuous map on M*.*

Here M denotes the maximal ideal space of $BUC(G \times \widehat{G})$, which was defined in Robert's talk.

Let $A \in C_1(G)$. A *is Fredholm if and only if* $\alpha_z(A)$ *is invertible for every* $z \in \mathcal{M} \setminus (G \times \overline{G})$ *(and the inverses are uniformly bdd).*

イロメ イ押 メイヨメ イヨメ

Let $\mathcal{C}_1(G):=\big\{A\in\mathcal{L}(L^2(G)):z\mapsto\alpha_z(A) \text{ continuous}\big\}.$

Proposition

Let $A \in C_1(G)$ *. Then the map*

$$
\alpha: G \times \widehat{G} \to \mathcal{L}(L^2(G)), \quad \alpha_z(A) := U_z A U_z^*
$$

extends to a strongly continuous map on M*.*

Here M denotes the maximal ideal space of $BUC(G \times \widehat{G})$, which was defined in Robert's talk.

Theorem (Fulsche/H. '24)

Let $A \in C_1(G)$. A *is Fredholm if and only if* $\alpha_z(A)$ *is invertible for every* $z \in \mathcal{M} \setminus (G \times \widehat{G})$ *(and the inverses are uniformly bdd).*

イロメ イ押 メイヨメ イヨメ

Let $A \in \mathcal{C}_1(G)$. A *is Fredholm if and only if* $\alpha_z(A)$ *is invertible for every* $z \in \mathcal{M} \setminus (G \times \widehat{G})$ *.*

Theorem (Lindner/Seidel 2014, Lange/Rabinovich 1985)

Let A ∈ BDO(Z)*.* A *is Fredholm if and only all of its limit operators* $\alpha_x(A)$, $x \in \beta \mathbb{Z} \setminus \mathbb{Z}$, are invertible.

Observations:

- $C_1(\mathbb{Z}) = \text{BDO}(\mathbb{Z})$ (well known, see e.g. the book by Rabinovich, Roch, Silbermann)
- \bullet $\mathcal{M} \cong \beta \mathbb{Z} \times \mathbb{T}$ in this case, hence $\mathcal{M} \setminus (\mathbb{Z} \times \mathbb{T}) \cong (\beta \mathbb{Z} \setminus \mathbb{Z}) \times \mathbb{T}$
- $\alpha_{x,t}(A)$ is unitarily equivalent to $\alpha_{x,1}(A) \equiv \alpha_x(A)$ for all $x \in \beta \mathbb{Z}, t \in \mathbb{T}$

K ロ ⊁ K 何 ≯ K ヨ ⊁ K ヨ ⊁

Let $A \in \mathcal{C}_1(G)$. A *is Fredholm if and only if* $\alpha_z(A)$ *is invertible for every* $z \in \mathcal{M} \setminus (G \times \widehat{G})$ *.*

Theorem (Lindner/Seidel 2014, Lange/Rabinovich 1985)

Let A ∈ BDO(Z)*.* A *is Fredholm if and only all of its limit operators* $\alpha_x(A)$, $x \in \beta \mathbb{Z} \setminus \mathbb{Z}$, are invertible.

Observations:

- $C_1(\mathbb{Z}) = \text{BDO}(\mathbb{Z})$ (well known, see e.g. the book by Rabinovich, Roch, Silbermann)
- \bullet $\mathcal{M} \cong \beta \mathbb{Z} \times \mathbb{T}$ in this case, hence $\mathcal{M} \setminus (\mathbb{Z} \times \mathbb{T}) \cong (\beta \mathbb{Z} \setminus \mathbb{Z}) \times \mathbb{T}$
- \bullet $\alpha_{x,t}(A)$ is unitarily equivalent to $\alpha_{x,1}(A) \equiv \alpha_x(A)$ for all $x \in \beta \mathbb{Z}, t \in \mathbb{T}$

イロメ イ押 メイヨメ イヨメ

Let $A \in \mathcal{C}_1(G)$. A *is Fredholm if and only if* $\alpha_z(A)$ *is invertible for every* $z \in \mathcal{M} \setminus (G \times \widehat{G})$ *.*

Theorem (Lindner/Seidel 2014, Lange/Rabinovich 1985)

Let A ∈ BDO(Z)*.* A *is Fredholm if and only all of its limit operators* $\alpha_x(A)$, $x \in \beta \mathbb{Z} \setminus \mathbb{Z}$, are invertible.

Observations:

- $C_1(\mathbb{Z}) = \text{BDO}(\mathbb{Z})$ (well known, see e.g. the book by Rabinovich, Roch, Silbermann)
- \bullet $\mathcal{M} \cong \beta \mathbb{Z} \times \mathbb{T}$ in this case, hence $\mathcal{M} \setminus (\mathbb{Z} \times \mathbb{T}) \cong (\beta \mathbb{Z} \setminus \mathbb{Z}) \times \mathbb{T}$
- \bullet $\alpha_{x,t}(A)$ is unitarily equivalent to $\alpha_{x,1}(A) \equiv \alpha_x(A)$ for all $x \in \beta \mathbb{Z}, t \in \mathbb{T}$

イロメ イ押 メイヨメ イヨメ

Let $A \in \mathcal{C}_1(G)$. A *is Fredholm if and only if* $\alpha_z(A)$ *is invertible for every* $z \in \mathcal{M} \setminus (G \times G)$ *.*

Theorem (Lindner/Seidel 2014, Lange/Rabinovich 1985)

Let A ∈ BDO(Z)*.* A *is Fredholm if and only all of its limit operators* $\alpha_x(A)$, $x \in \beta \mathbb{Z} \setminus \mathbb{Z}$, are invertible.

Observations:

- $C_1(\mathbb{Z}) = \text{BDO}(\mathbb{Z})$ (well known, see e.g. the book by Rabinovich, Roch, Silbermann)
- \bullet $\mathcal{M} \cong \beta \mathbb{Z} \times \mathbb{T}$ in this case, hence $\mathcal{M} \setminus (\mathbb{Z} \times \mathbb{T}) \cong (\beta \mathbb{Z} \setminus \mathbb{Z}) \times \mathbb{T}$
- $\alpha_{x,t}(A)$ is unitarily equivalent to $\alpha_{x,1}(A) \equiv \alpha_x(A)$ for all $x \in \beta \mathbb{Z}, t \in \mathbb{T}$

イロメ イ押 メイヨメ イヨメ

 QQQ ∍

Now consider $G := \mathbb{R}$ and recall $Af(x) := \int_{\mathbb{R}} k(x, y) f(y) \, dy$.

• band operators (BO(R)): $k(x, y) = 0$ for $|x - y| > \omega$

- band-dominated operators (BDO(\mathbb{R})): closure of BO(\mathbb{R}) w.r.t. $\left\|\cdot\right\|_{\mathcal{L}(L^2(\mathbb{R}))}$
- $\text{BDO}(\mathbb{R})$ is a C^* -algebra that contains all compact operators

◆ ロ ▶ → 伊 ▶ → ヨ ▶ → ヨ ▶ → ヨ

Now let G be an lca group, recall $Af(x) := \int_G k(x, y) f(y) dy$.

- band operators $(BO(G))$: $k(x, y) = 0$ for $d(x, y) > \omega$
- band-dominated operators $(BDO(G))$: closure of $BO(G)$ w.r.t. $\left\|\cdot\right\|_{\mathcal{L}(L^2(G))}$
- $\mathrm{BDO}(G)$ is a C^* -algebra that contains all compact operators

◆ ロ ▶ → 伊 ▶ → ヨ ▶ → ヨ ▶ → ヨ

Let G be an lca group. An operator $A\in \mathcal{L}(L^2(G))$ is called a *band operator if there is a compact set* $K ⊂ G$ *such that for all* $H\subseteq G$ and all $f\in L^2(G)$ with $\mathrm{supp}\, f\subseteq H$ we have

 $supp(Af) \subseteq HK$.

equivalently, if $Af(x) := \int_G k(x,y) f(y) \, \mathrm{d}y$, then

 $\text{supp } k \subseteq \{ (x, x + y) : x \in G, y \in K \}.$

- \bullet band-dominated operators (BDO(G)): closure of BO(G) w.r.t. $\left\|\cdot\right\|_{\mathcal{L}(L^2(G))}$
- $\mathrm{BDO}(G)$ is a C^* -algebra that contains all compact operators
- \bullet If G admits a proper metric (i.e. is second countable), then this agrees with the metric definition.

≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト

Let G be an lca group. An operator $A\in \mathcal{L}(L^2(G))$ is called a *band operator if there is a compact set* $K ⊂ G$ *such that for all* $H\subseteq G$ and all $f\in L^2(G)$ with $\mathrm{supp}\, f\subseteq H$ we have

 $supp(Af) \subseteq HK$.

equivalently, if $Af(x) := \int_G k(x,y) f(y) \, \mathrm{d}y,$ then

 $\text{supp } k \subset \{ (x, x + y) : x \in G, y \in K \}.$

- \bullet band-dominated operators (BDO(G)): closure of BO(G) w.r.t. $\left\|\cdot\right\|_{\mathcal{L}(L^2(G))}$
- $\mathrm{BDO}(G)$ is a C^* -algebra that contains all compact operators
- \bullet If G admits a proper metric (i.e. is second countable), then this agrees with the metric definition.

K ロ ⊁ K 何 ≯ K ヨ ⊁ K ヨ ⊁

Let G be an lca group. An operator $A\in \mathcal{L}(L^2(G))$ is called a *band operator if there is a compact set* $K \subseteq G$ *such that for all* $H\subseteq G$ and all $f\in L^2(G)$ with $\mathrm{supp}\, f\subseteq H$ we have

 $supp(Af) \subseteq HK$.

equivalently, if $Af(x) := \int_G k(x,y) f(y) \, \mathrm{d}y,$ then

$$
\operatorname{supp} k \subseteq \{(x, x+y) : x \in G, y \in K\}.
$$

- band-dominated operators $(BDO(G))$: closure of $BO(G)$ w.r.t. $\left\|\cdot\right\|_{\mathcal{L}(L^2(G))}$
- $\mathrm{BDO}(G)$ is a C^* -algebra that contains all compact operators
- \bullet If G admits a proper metric (i.e. is second countable), then this agrees with the metric definition.

4 ロ) (何) (日) (日)

B

Let G be an lca group. An operator $A\in \mathcal{L}(L^2(G))$ is called a *band operator if there is a compact set* $K \subseteq G$ *such that for all* $H\subseteq G$ and all $f\in L^2(G)$ with $\mathrm{supp}\, f\subseteq H$ we have

 $supp(Af) \subseteq HK$.

equivalently, if $Af(x) := \int_G k(x,y) f(y) \, \mathrm{d}y,$ then

$$
\operatorname{supp} k \subseteq \{(x, x+y) : x \in G, y \in K\}.
$$

- band-dominated operators $(BDO(G))$: closure of $BO(G)$ w.r.t. $\left\|\cdot\right\|_{\mathcal{L}(L^2(G))}$
- $\mathrm{BDO}(G)$ is a C^* -algebra that contains all compact operators
- \bullet If G admits a proper metric (i.e. is second countable), then this agrees with the metric definition.

K ロ ト K 個 ト K 君 ト K 君 ト …

 \bar{z}

Let G be an lca group. An operator $A\in \mathcal{L}(L^2(G))$ is called a *band operator if there is a compact set* $K \subseteq G$ *such that for all* $H\subseteq G$ and all $f\in L^2(G)$ with $\mathrm{supp}\, f\subseteq H$ we have

 $supp(Af) \subseteq HK$.

equivalently, if $Af(x) := \int_G k(x,y) f(y) \, \mathrm{d}y,$ then

$$
\operatorname{supp} k \subseteq \{(x, x+y) : x \in G, y \in K\}.
$$

- band-dominated operators $(BDO(G))$: closure of $BO(G)$ w.r.t. $\left\|\cdot\right\|_{\mathcal{L}(L^2(G))}$
- $\mathrm{BDO}(G)$ is a C^* -algebra that contains all compact operators
- \bullet If G admits a proper metric (i.e. is second countable), then this agrees with the metric definition.

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

 \equiv

- Problem 1: A is not necessarily compact if k has compact support.
- Problem 2: Even for multiplication operators, limit operators may not exist, e.g.,

$$
f(x) := (-1)^{\lfloor x \rfloor}.
$$

Then $(V_{-\sqrt{2}n} M_f V_{\sqrt{2}n})_{n\in \mathbb{N}}$ does not have a strongly convergent subsequence.

• Consequence: $BDO(G) \neq C_1(G)$ unless G is discrete

イロメ イ押 メイヨメ イヨメ

- Problem 1: A is not necessarily compact if k has compact support.
- Problem 2: Even for multiplication operators, limit operators may not exist, e.g.,

$$
f(x) := (-1)^{\lfloor x \rfloor}.
$$

Then $(V_{-\sqrt{2}n} M_f V_{\sqrt{2}n})_{n\in \mathbb{N}}$ does not have a strongly convergent subsequence.

• Consequence: $BDO(G) \neq C_1(G)$ unless G is discrete

≮ロト ⊀何 ト ⊀ ヨ ト ⊀ ヨ ト

$$
\mathcal{C}_{0,1}(G) := \left\{ A \in \mathcal{L}(L^2(G)) : \chi \mapsto \alpha_{e,\chi}(A) \text{ continuous} \right\}
$$

Let G be an lca group. Then $BDO(G) = C_{0,1}(G)$ *.*

$$
\mathcal{C}_{1,0}(G):=\left\{A\in \mathcal{L}(L^2(G)): g\mapsto \alpha_{g,1}(A) \text{ continuous}\right\}
$$

For every lca group G *we have*

 $C_1(G) = BDO(G) \cap \mathcal{F}^{-1} BDO(\widehat{G})\mathcal{F}.$

Raffael Hagger [Operator algebras on locally compact abelian groups](#page-0-0)

K ロ ⊁ K 何 ≯ K ヨ ⊁ K ヨ ⊁

 299

B

$$
\mathcal{C}_{0,1}(G) := \left\{ A \in \mathcal{L}(L^2(G)) : \chi \mapsto \alpha_{e,\chi}(A) \text{ continuous} \right\}
$$

Let G *be an lca group. Then* $BDO(G) = C_{0.1}(G)$ *.*

$$
\mathcal{C}_{1,0}(G):=\left\{A\in \mathcal{L}(L^2(G)): g\mapsto \alpha_{g,1}(A) \text{ continuous}\right\}
$$

For every lca group G *we have*

 $C_1(G) = BDO(G) \cap \mathcal{F}^{-1} BDO(\widehat{G})\mathcal{F}.$

Raffael Hagger [Operator algebras on locally compact abelian groups](#page-0-0)

÷.

≮ロト ⊀何 ト ⊀ ヨ ト ⊀ ヨ ト

$$
\mathcal{C}_{0,1}(G) := \left\{ A \in \mathcal{L}(L^2(G)) : \chi \mapsto \alpha_{e,\chi}(A) \text{ continuous} \right\}
$$

Let G *be an lca group. Then* $BDO(G) = C_{0.1}(G)$ *.*

$$
\mathcal{C}_{1,0}(G):=\left\{A\in \mathcal{L}(L^2(G)): g\mapsto \alpha_{g,1}(A) \text{ continuous}\right\}
$$

For every lca group G *we have*

 $C_1(G) = BDO(G) \cap \mathcal{F}^{-1} BDO(\widehat{G})\mathcal{F}.$

Raffael Hagger [Operator algebras on locally compact abelian groups](#page-0-0)

÷.

≮ロト ⊀何 ト ⊀ ヨ ト ⊀ ヨ ト

$$
\mathcal{C}_{0,1}(G) := \left\{ A \in \mathcal{L}(L^2(G)) : \chi \mapsto \alpha_{e,\chi}(A) \text{ continuous} \right\}
$$

Let G *be an lca group. Then* $BDO(G) = C_{0.1}(G)$ *.*

$$
\mathcal{C}_{1,0}(G):=\left\{A\in \mathcal{L}(L^2(G)): g\mapsto \alpha_{g,1}(A) \text{ continuous}\right\}
$$

Corollary

For every lca group G *we have*

$$
C_1(G) = \text{BDO}(G) \cap \mathcal{F}^{-1} \text{BDO}(\widehat{G})\mathcal{F}.
$$

モニー・モン イミン イヨン エミ

Let G *be an lca group. Then* $BDO(G) = C_{0,1}(G)$ *.*

Sketch of the proof:

We know that

$$
\mathcal{C}_1(G) = L^1(G \times \widehat{G}) * \mathcal{L}(L^2(G)).
$$

Direct computation shows

$$
((\delta_0 \otimes f) * A)\varphi(x) = \int_G \hat{f}(y-x)k_A(x,y)\varphi(y) \,dy
$$

for $f \in L^1(\widehat{G}), \varphi \in L^2(G), \, x \in G.$ $\Rightarrow \mathcal{C}_{0,1}(G) \subseteq \text{BDO}(G).$

Conversely, if $A \in \text{BO}_K(G)$, choose $f \in L^1(\widehat{G})$ with $\widehat{f} = 1$ on K. Then $A = (\delta_0 \otimes f) * A$, hence $A \in C_{0,1}(G)$.

4 ロ ト ィ *同* ト

(大震災 不重)

Let G *be an lca group. Then* $BDO(G) = C_{0,1}(G)$ *.*

Sketch of the proof:

We know that

$$
\mathcal{C}_1(G) = L^1(G \times \widehat{G}) \ast \mathcal{L}(L^2(G)).
$$

Direct computation shows

$$
((\delta_0 \otimes f) * A)\varphi(x) = \int_G \hat{f}(y-x)k_A(x,y)\varphi(y) \,dy
$$

for $f \in L^1(\widehat{G}), \varphi \in L^2(G), \, x \in G.$ $\Rightarrow \mathcal{C}_{0,1}(G) \subseteq \text{BDO}(G).$

Conversely, if $A \in \text{BO}_K(G)$, choose $f \in L^1(\widehat{G})$ with $\widehat{f} = 1$ on K. Then $A = (\delta_0 \otimes f) * A$, hence $A \in C_{0,1}(G)$.

(大震災 不重)

Let G *be an lca group. Then* $BDO(G) = C_{0,1}(G)$ *.*

Sketch of the proof:

Similarly,

$$
\mathcal{C}_{0,1}(G)=(\delta_0\otimes L^1(\widehat{G}))\ast \mathcal{L}(L^2(G)).
$$

Direct computation shows

$$
((\delta_0 \otimes f) * A)\varphi(x) = \int_G \hat{f}(y-x)k_A(x,y)\varphi(y) \,dy
$$

for $f \in L^1(\widehat{G}), \varphi \in L^2(G), \, x \in G.$ $\Rightarrow \mathcal{C}_{0,1}(G) \subseteq \text{BDO}(G).$

Conversely, if $A \in \text{BO}_K(G)$, choose $f \in L^1(\widehat{G})$ with $\widehat{f} = 1$ on K. Then $A = (\delta_0 \otimes f) * A$, hence $A \in C_{0,1}(G)$.

4 ロ ト ィ *同* ト

(大震災 不重)

Let G *be an lca group. Then* $BDO(G) = C_{0,1}(G)$ *.*

Sketch of the proof:

Similarly,

$$
\mathcal{C}_{0,1}(G)=(\delta_0\otimes L^1(\widehat{G}))\ast \mathcal{L}(L^2(G)).
$$

Direct computation shows

$$
((\delta_0 \otimes f) * A)\varphi(x) = \int_G \hat{f}(y-x)k_A(x,y)\varphi(y) \,dy
$$

for $f \in L^1(\widehat{G}), \varphi \in L^2(G), x \in G$. $\Rightarrow \mathcal{C}_{0,1}(G) \subseteq \text{BDO}(G).$

Conversely, if $A \in \text{BO}_K(G)$, choose $f \in L^1(\widehat{G})$ with $\widehat{f} = 1$ on K. Then $A = (\delta_0 \otimes f) * A$, hence $A \in C_{0,1}(G)$.

K ロ ⊁ K 何 ≯ K ヨ ⊁ K ヨ ⊁

Let G *be an lca group. Then* $BDO(G) = C_{0,1}(G)$ *.*

Sketch of the proof:

Similarly,

$$
\mathcal{C}_{0,1}(G)=(\delta_0\otimes L^1(\widehat{G}))\ast \mathcal{L}(L^2(G)).
$$

Direct computation shows

$$
((\delta_0 \otimes f) * A)\varphi(x) = \int_G \hat{f}(y-x)k_A(x,y)\varphi(y) \,dy
$$

for $f \in L^1(\widehat{G}), \varphi \in L^2(G), x \in G$. $\Rightarrow \mathcal{C}_{0,1}(G) \subseteq \text{BDO}(G).$

Conversely, if $A \in \text{BO}_K(G)$, choose $f \in L^1(\widehat{G})$ with $\widehat{f} = 1$ on K. Then $A = (\delta_0 \otimes f) * A$, hence $A \in C_{0,1}(G)$.

イロメ イ押 メイヨメ イヨメ

Let G be an lca group. Then $BDO(G) = C_{0.1}(G)$ *.*

Sketch of the proof:

Similarly,

$$
\mathcal{C}_{0,1}(G)=(\delta_0\otimes L^1(\widehat{G}))\ast \mathcal{L}(L^2(G)).
$$

Direct computation shows

$$
((\delta_0 \otimes f) * A)\varphi(x) = \int_G \hat{f}(y-x)k_A(x,y)\varphi(y) \,dy
$$

for $f \in L^1(\widehat{G}), \varphi \in L^2(G), x \in G$. $\Longrightarrow C_{0,1}(G) \subseteq BDO(G).$

Conversely, if $A \in \text{BO}_K(G)$, choose $f \in L^1(\widehat{G})$ with $\widehat{f} = 1$ on K. Then $A = (\delta_0 \otimes f) * A$, hence $A \in C_{0,1}(G)$.

医电子 化重子

 $||A||_H := \sup \{||Af|| : ||f|| = 1, \text{supp } f \subseteq gH \text{ for some } g \in G\}.$

For all $K \subseteq G$ *compact and* $c \in (0,1)$ *there is a compact subset* $H \subseteq G$ *such that for all* $T \in BO_K(G)$ *we have*

 $|||T||_H \geq c |||T||$.

lower norm:
$$
\nu(A) := \inf_{\|\varphi\|=1} \|A\varphi\| = \|A^{-1}\|^{-1}
$$

Let $A \in \mathcal{C}_1(G)$, $\Xi := G \times \widehat{G}$ *. Then there exists* $y \in \partial \Xi$ *such that*

$$
\nu(\alpha_y(A)) = \inf_{x \in \partial \Xi} \nu(\alpha_x(A)).
$$

モニー・モン イミン イヨン エミ

 $||A||_H := \sup \{||Af|| : ||f|| = 1, \text{supp } f \subseteq gH \text{ for some } g \in G\}.$

Theorem (Fulsche/H. '24)

For all $K \subseteq G$ *compact and* $c \in (0,1)$ *there is a compact subset* $H \subseteq G$ *such that for all* $T \in BO_K(G)$ *we have*

 $|||T||_H \geq c |||T||$.

lower norm:
$$
\nu(A) := \inf_{\|\varphi\|=1} \|A\varphi\| = \|A^{-1}\|^{-1}
$$

Let $A \in \mathcal{C}_1(G)$, $\Xi := G \times \widehat{G}$ *. Then there exists* $y \in \partial \Xi$ *such that*

$$
\nu(\alpha_y(A)) = \inf_{x \in \partial \Xi} \nu(\alpha_x(A)).
$$

イロト イ押 トイヨ トイヨ トー

 \Rightarrow

 $||A||_H := \sup \{||Af|| : ||f|| = 1, \text{supp } f \subseteq gH \text{ for some } g \in G\}.$

Theorem (Fulsche/H. '24)

For all $K \subseteq G$ *compact and* $c \in (0,1)$ *there is a compact subset* $H \subseteq G$ *such that for all* $T \in BO_K(G)$ *we have*

 $|||T||_H \geq c |||T||$.

lower norm:
$$
\nu(A) := \inf_{\|\varphi\|=1} \|A\varphi\| = \|A^{-1}\|^{-1}
$$

Let $A \in \mathcal{C}_1(G)$, $\Xi := G \times \widehat{G}$ *. Then there exists* $y \in \partial \Xi$ *such that*

$$
\nu(\alpha_y(A)) = \inf_{x \in \partial \Xi} \nu(\alpha_x(A)).
$$

イロト イ押 トイヨ トイヨ トー

 \Rightarrow

 $||A||_{H} := \sup \{||Af|| : ||f|| = 1, \text{supp } f \subseteq gH \text{ for some } g \in G\}.$

Theorem (Fulsche/H. '24)

For all $K \subseteq G$ *compact and* $c \in (0,1)$ *there is a compact subset* $H \subseteq G$ *such that for all* $T \in BO_K(G)$ *we have*

 $|||T||_H \geq c |||T||$.

lower norm:
$$
\nu(A) := \inf_{\|\varphi\|=1} \|A\varphi\| = \|A^{-1}\|^{-1}
$$

Proposition

Let $A \in \mathcal{C}_1(G)$, $\Xi := G \times \widehat{G}$ *. Then there exists* $y \in \partial \Xi$ *such that*

$$
\nu(\alpha_y(A)) = \inf_{x \in \partial \Xi} \nu(\alpha_x(A)).
$$

 $(1 - 4)$ $(1 -$

÷.

Let $A \in \mathcal{C}_1(G)$ and $\Xi := G \times \widehat{G}$. A *is Fredholm if and only all of its limit operators* $\alpha_x(A)$, $x \in \partial \Xi$, are invertible. Moreover,

$$
sp_{\text{ess}}(A) = \bigcup_{x \in \partial \Xi} sp(\alpha_x(A)).
$$

For $A \in C_1(G)$ *we have*

$$
||A + \mathcal{K}(L^2(G))|| = \max_{x \in \partial E} ||\alpha_x(A)||.
$$

Raffael Hagger [Operator algebras on locally compact abelian groups](#page-0-0)

∢ロ ▶ ∢ 御 ▶ ∢ ヨ ▶ ∢ ヨ ▶

B

Let $A \in \mathcal{C}_1(G)$ *and* $\Xi := G \times \widehat{G}$ *. A is Fredholm if and only all of its limit operators* $\alpha_x(A)$, $x \in \partial \Xi$, are invertible. Moreover,

$$
sp_{\text{ess}}(A) = \bigcup_{x \in \partial \Xi} sp(\alpha_x(A)).
$$

Theorem (Fulsche/H. '24)

For $A \in C_1(G)$ *we have*

$$
||A + \mathcal{K}(L^2(G))|| = \max_{x \in \partial \Xi} ||\alpha_x(A)||.
$$

 \leftarrow \leftarrow \rightarrow

B

Outlook:

• phase spaces Ξ that are not of the form $G\times \widehat{G}$, only assume that the representation

$$
U_{\cdot} : \Xi \to \mathcal{L}(\mathcal{H}), \quad \xi \to U_{\xi}
$$

is integrable

for fixed window $\varphi_0\in {\mathcal H}$ with $\xi\mapsto \langle \varphi_0, U_\xi\varphi_0\rangle\in L^1(\Xi)$ consider the wavelet transform

$$
\mathcal{W}_{\varphi_0} \colon \mathcal{H} \to L^2(\Xi), \quad \mathcal{W}_{\varphi_0} f(\xi) := \langle f, U_{\xi} \varphi_0 \rangle
$$

- consider operators on $\mathcal{W}_{\varphi_0}(\mathcal{H})$ (\rightarrow Fock spaces)
- allows to consider operators on coorbit/modulation spaces

イロメ イ何 メイヨメ イヨメ

 Ω

Outlook:

• phase spaces Ξ that are not of the form $G\times \widehat{G}$, only assume that the representation

$$
U_{\cdot} : \Xi \to \mathcal{L}(\mathcal{H}), \quad \xi \to U_{\xi}
$$

is integrable

for fixed window $\varphi_0\in {\cal H}$ with $\xi\mapsto \langle \varphi_0, U_\xi\varphi_0\rangle\in L^1(\Xi)$ consider the wavelet transform

$$
\mathcal{W}_{\varphi_0} \colon \mathcal{H} \to L^2(\Xi), \quad \mathcal{W}_{\varphi_0} f(\xi) := \langle f, U_{\xi} \varphi_0 \rangle
$$

- consider operators on $\mathcal{W}_{\varphi_0}(\mathcal{H})$ (\rightarrow Fock spaces)
- allows to consider operators on coorbit/modulation spaces

K ロ ⊁ K 何 ≯ K ヨ ⊁ K ヨ ⊁

Outlook:

• phase spaces Ξ that are not of the form $G\times\widehat{G}$, only assume that the representation

$$
U_{\cdot} : \Xi \to \mathcal{L}(\mathcal{H}), \quad \xi \to U_{\xi}
$$

is integrable

for fixed window $\varphi_0\in {\cal H}$ with $\xi\mapsto \langle \varphi_0, U_\xi\varphi_0\rangle\in L^1(\Xi)$ consider the wavelet transform

$$
\mathcal{W}_{\varphi_0} \colon \mathcal{H} \to L^2(\Xi), \quad \mathcal{W}_{\varphi_0} f(\xi) := \langle f, U_{\xi} \varphi_0 \rangle
$$

- consider operators on $\mathcal{W}_{\varphi_0}(\mathcal{H})$ (\rightarrow Fock spaces)
- allows to consider operators on coorbit/modulation spaces

イロメ イ押 メイヨメ イヨメ
Outlook:

• phase spaces Ξ that are not of the form $G\times\widehat{G}$, only assume that the representation

$$
U_{\cdot} : \Xi \to \mathcal{L}(\mathcal{H}), \quad \xi \to U_{\xi}
$$

is integrable

for fixed window $\varphi_0\in {\cal H}$ with $\xi\mapsto \langle \varphi_0, U_\xi\varphi_0\rangle\in L^1(\Xi)$ consider the wavelet transform

$$
\mathcal{W}_{\varphi_0} \colon \mathcal{H} \to L^2(\Xi), \quad \mathcal{W}_{\varphi_0} f(\xi) := \langle f, U_{\xi} \varphi_0 \rangle
$$

- consider operators on $\mathcal{W}_{\varphi_0}(\mathcal{H}) \ (\to$ Fock spaces)
- allows to consider operators on coorbit/modulation spaces $(p \neq 2)$

イロメ イ押 メイヨメ イヨメ

 $2Q$

Define $V_{\xi} := \mathcal{W}_{\varphi_0} U_{\xi} \mathcal{W}_{\varphi_0}^*$,

$$
\alpha_{\xi}(A) := V_{\xi} A V_{\xi}^*
$$

for $A\in \mathcal{L}(\mathcal{W}_{\varphi_0}(\mathcal{H}))$, and

 $\mathcal{C}_1(\varphi_0):=\{A\in\mathcal{L}(\mathcal{W}_{\varphi_0}(\mathcal{H})):\xi\mapsto\alpha_\xi(A) \text{ continuous}\}$.

Theorem (Fulsche/H. '24)

Let Ξ *be an lca group and denote the orthogonal projection of* $L^2(\Xi)$ onto $\mathcal{W}_{\varphi_0}(\mathcal{H})$ by $P_{\varphi_0}.$ Then

 $C_1(\varphi_0) = P_{\varphi_0} \, \text{BDO}(\Xi) P_{\varphi_0}.$

イロン イ何ン イヨン イヨン・ヨー

 200