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Let G be a locally compact abelian group (such as Z or R) and
consider a bounded integral operator of the form

A : L2(G) → L2(G), (Af)(x) :=

∫
G
k(x, y)f(y) dy.

Questions:
When is this integral operator compact?
When is this integral operator Fredholm?
What is the essential spectrum of A?
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G := Z, i.e. L2(G) = ℓ2(Z)
A : ℓ2(Z) → ℓ2(Z) can be described by

(Af)j =
∑
k∈Z

Ajkfk,

that is,

A =



. . .
...

...
...

...
· · · A−1−1 A−10 A−11 · · ·
· · · A0−1 A00 A01 · · ·
· · · A1−1 A10 A11 · · ·

...
...

...
...

. . .


.
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band operators (BO(Z)): finitely many non-zero diagonals
band-dominated operators (BDO(Z)): closure of BO(Z)
w.r.t. ∥·∥L(ℓ2(Z))
BDO(Z) is a C∗-algebra that contains all compact
operators
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A ∈ BDO(Z)

A

+K

=



. . .
...

...
...

...
...

...
. . . A−2−2 A−2−1 A−20 A−21 A−22 . . .
. . . A−1−2 A−1−1 A−10 A−11 A−12 . . .
. . . A0−2 A0−1 A00 A01 A02 . . .
. . . A1−2 A1−1 A10 A11 A12 . . .
. . . A2−2 A2−1 A20 A21 A22 . . .

...
...

...
...

...
...

. . .



A ⇐⇒ A+K compact and spess(A) = spess(A+K)
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A =
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. . .
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...
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...
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

Ah := B = s- lim
n→∞

V −hnAV hn (if it exists)
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A ∈ BDO(Z)

V −1AV =



. . .
...

...
...

...
...

...
. . . A−1−1 A−10 A−11 A−12 A−13 . . .

. . . A0−1 A00 A01 A02 A03 . . .

. . . A1−1 A10 A11 A12 A13 . . .

. . . A2−1 A20 A21 A22 A23 . . .

. . . A3−1 A30 A31 A32 A33 . . .
...

...
...

...
...

...
. . .
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A ∈ BDO(Z)

V −2AV 2 =



. . .
...

...
...

...
...

...
. . . A00 A01 A02 A03 A04 . . .

. . . A10 A11 A12 A13 A14 . . .

. . . A20 A21 A22 A23 A24 . . .

. . . A30 A31 A32 A33 A34 . . .

. . . A40 A41 A42 A43 A44 . . .
...

...
...

...
...

...
. . .



Ah := B = s- lim
n→∞

V −hnAV hn (if it exists)
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A ∈ BDO(Z)

V −5AV 5 =



. . .
...

...
...

...
...

...
. . . A33 A34 A35 A36 A37 . . .
. . . A43 A44 A45 A46 A47 . . .
. . . A53 A54 A55 A56 A57 . . .
. . . A63 A64 A65 A66 A67 . . .
. . . A73 A74 A75 A76 A77 . . .

...
...

...
...

...
...

. . .



Ah := B = s- lim
n→∞

V −hnAV hn (if it exists)
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A ∈ BDO(Z)

B =



. . .
...

...
...

...
...

...
. . . B−2−2 B−2−1 B−20 B−21 B−22 . . .
. . . B−1−2 B−1−1 B−10 B−11 B−12 . . .
. . . B0−2 B0−1 B00 B01 B02 . . .
. . . B1−2 B1−1 B10 B11 B12 . . .
. . . B2−2 B2−1 B20 B21 B22 . . .

...
...

...
...

...
...

. . .


Ahf := Bf = lim

n→∞
V −hnAV hnf (if it exists for all f ∈ ℓ2(Z))
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α·(A) : Z → L(ℓ2(Z)), αn(A) := V −nAV n can be extended to a
strongly continuous map on βZ.

Theorem

A : ℓ2(Z) → ℓ2(Z) is compact if and only if A ∈ BDO(Z) and
αx(A) = 0 for all x ∈ βZ \ Z.

Theorem (Lindner/Seidel 2014, Lange/Rabinovich 1985)

Let A ∈ BDO(Z). A is Fredholm if and only all of its limit
operators αx(A), x ∈ βZ \ Z, are invertible. Moreover,

spess(A) =
⋃

x∈βZ\Z

sp(αx(A)).
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Now consider G := R and recall Af(x) :=
∫
R k(x, y)f(y) dy.

band operators (BO(Z)): finitely many non-zero diagonals
band-dominated operators (BDO(Z)): closure of BO(Z)
w.r.t. ∥·∥L(ℓ2(Z))
BDO(Z) is a C∗-algebra that contains all compact
operators
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Now consider G := R and recall Af(x) :=
∫
R k(x, y)f(y) dy.

band operators (BO(R)): k(x, y) = 0 for |x− y| > ω

band-dominated operators (BDO(R)): closure of BO(R)
w.r.t. ∥·∥L(L2(R))
BDO(R) is a C∗-algebra that contains all compact
operators
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Problem 1: A is not necessarily compact if k has compact
support.
Problem 2: Even for multiplication operators, limit
operators may not exist, e.g.,

f(x) := (−1)⌊x⌋.

Then (V−
√
2nMfV√

2n)n∈N does not have a strongly
convergent subsequence.
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L2(R) ∼= ℓ2(Z, L2([0, 1)))

=⇒ A ∈ BDO(R) is invertible modulo K(L2(R),P) if and only if
all limit operators of A are invertible.∗
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Let Ξ be a locally compact abelian group and

U· : Ξ → L(H), ξ 7→ Uξ

a strongly continuous, unitary, projective representation, i.e.,

UξUρ = m(ξ, ρ)Uξρ.

For Ξ := G× Ĝ we may choose H = L2(G) and

Ug,χf(h) = χ(h)f(g−1h).

For example, if Ξ = Z× T, then

Un,tf(m) = tmf(m− n)

for f ∈ ℓ2(Z), m,n ∈ Z, t ∈ T.
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Let Ξ be a locally compact abelian group and

U· : Ξ → L(H), ξ 7→ Uξ

a strongly continuous, unitary, projective representation, i.e.,

UξUρ = m(ξ, ρ)Uξρ.

For Ξ := G× Ĝ we may choose H = L2(G) and

Ug,χf(h) = χ(h)f(g−1h).

For example, if Ξ = R× R, then

Ux,tf(y) = eiytf(y − x)

for f ∈ L2(R), x, y, t ∈ R.
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Let C1(G) :=
{
A ∈ L(L2(G)) : z 7→ αz(A) continuous

}
.

Proposition

Let A ∈ C1(G). Then the map

α· : G× Ĝ → L(L2(G)), αz(A) := UzAU
∗
z

extends to a strongly continuous map on M.

Here M denotes the maximal ideal space of BUC(G× Ĝ),
which was defined in Robert’s talk.

Theorem (Fulsche/H. ’24)

Let A ∈ C1(G). A is Fredholm if and only if αz(A) is invertible for
every z ∈ M \ (G× Ĝ) (and the inverses are uniformly bdd).
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which was defined in Robert’s talk.

Theorem (Fulsche/H. ’24)

Let A ∈ C1(G). A is Fredholm if and only if αz(A) is invertible for
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Theorem (Fulsche/H. ’24)

Let A ∈ C1(G). A is Fredholm if and only if αz(A) is invertible for
every z ∈ M \ (G× Ĝ).

Theorem (Lindner/Seidel 2014, Lange/Rabinovich 1985)

Let A ∈ BDO(Z). A is Fredholm if and only all of its limit
operators αx(A), x ∈ βZ \ Z, are invertible.

Observations:
C1(Z) = BDO(Z) (well known, see e.g. the book by
Rabinovich, Roch, Silbermann)
M ∼= βZ×T in this case, hence M\ (Z×T) ∼= (βZ\Z)×T
αx,t(A) is unitarily equivalent to αx,1(A) ≡ αx(A) for all
x ∈ βZ, t ∈ T
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Definition

Let G be an lca group. An operator A ∈ L(L2(G)) is called a
band operator if there is a compact set K ⊆ G such that for all
H ⊆ G and all f ∈ L2(G) with supp f ⊆ H we have

supp(Af) ⊆ HK.

equivalently, if Af(x) :=
∫
G k(x, y)f(y) dy, then

supp k ⊆ {(x, x+ y) : x ∈ G, y ∈ K} .

band-dominated operators (BDO(G)): closure of BO(G)
w.r.t. ∥·∥L(L2(G))

BDO(G) is a C∗-algebra that contains all compact
operators
If G admits a proper metric (i.e. is second countable), then
this agrees with the metric definition.
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Problem 1: A is not necessarily compact if k has compact
support.
Problem 2: Even for multiplication operators, limit
operators may not exist, e.g.,

f(x) := (−1)⌊x⌋.

Then (V−
√
2nMfV√

2n)n∈N does not have a strongly
convergent subsequence.
Consequence: BDO(G) ̸= C1(G) unless G is discrete
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C0,1(G) :=
{
A ∈ L(L2(G)) : χ 7→ αe,χ(A) continuous

}
Theorem (Fulsche/H. ’24)

Let G be an lca group. Then BDO(G) = C0,1(G).

C1,0(G) :=
{
A ∈ L(L2(G)) : g 7→ αg,1(A) continuous

}
Corollary
For every lca group G we have

C1(G) = BDO(G) ∩ F−1BDO(Ĝ)F .
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Theorem (Fulsche/H. ’24)

Let G be an lca group. Then BDO(G) = C0,1(G).

Sketch of the proof:

We know that

C1(G) = L1(G× Ĝ) ∗ L(L2(G)).

Direct computation shows(
(δ0 ⊗ f) ∗A

)
φ(x) =

∫
G
f̂(y − x)kA(x, y)φ(y) dy

for f ∈ L1(Ĝ), φ ∈ L2(G), x ∈ G.
=⇒ C0,1(G) ⊆ BDO(G).

Conversely, if A ∈ BOK(G), choose f ∈ L1(Ĝ) with f̂ = 1 on
K. Then A = (δ0 ⊗ f) ∗A, hence A ∈ C0,1(G).
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For A ∈ L(L2(G)) and H ⊆ G define

|||A|||H := sup {∥Af∥ : ∥f∥ = 1, supp f ⊆ gH for some g ∈ G} .

Theorem (Fulsche/H. ’24)

For all K ⊆ G compact and c ∈ (0, 1) there is a compact subset
H ⊆ G such that for all T ∈ BOK(G) we have

|||T |||H ≥ c ∥T∥.

lower norm: ν(A) := inf
∥φ∥=1

∥Aφ∥ =
∥∥A−1

∥∥−1

Proposition

Let A ∈ C1(G), Ξ := G× Ĝ. Then there exists y ∈ ∂Ξ such that

ν(αy(A)) = inf
x∈∂Ξ

ν(αx(A)).
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Theorem (Fulsche/H. ’24)

Let A ∈ C1(G) and Ξ := G× Ĝ. A is Fredholm if and only all of
its limit operators αx(A), x ∈ ∂Ξ, are invertible. Moreover,

spess(A) =
⋃

x∈∂Ξ
sp(αx(A)).

Theorem (Fulsche/H. ’24)

For A ∈ C1(G) we have∥∥A+K(L2(G))
∥∥ = max

x∈∂Ξ
∥αx(A)∥ .
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Outlook:

phase spaces Ξ that are not of the form G× Ĝ, only
assume that the representation

U· : Ξ → L(H), ξ → Uξ

is integrable
for fixed window φ0 ∈ H with ξ 7→ ⟨φ0, Uξφ0⟩ ∈ L1(Ξ)
consider the wavelet transform

Wφ0 : H → L2(Ξ), Wφ0f(ξ) := ⟨f, Uξφ0⟩

consider operators on Wφ0(H) (→ Fock spaces)
allows to consider operators on coorbit/modulation spaces
(p ̸= 2)
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Define Vξ := Wφ0UξW∗
φ0

,

αξ(A) := VξAV
∗
ξ

for A ∈ L(Wφ0(H)), and

C1(φ0) := {A ∈ L(Wφ0(H)) : ξ 7→ αξ(A) continuous} .

Theorem (Fulsche/H. ’24)
Let Ξ be an lca group and denote the orthogonal projection of
L2(Ξ) onto Wφ0(H) by Pφ0 . Then

C1(φ0) = Pφ0 BDO(Ξ)Pφ0 .
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