• Zielgruppen
  • Suche
 

Robert Fulsche

Institut für Analysis

Leibniz Universität Hannover

Welfengarten 1

30167 Hannover

 

Telefon: +49 (0)511 762 3207

Email: fulsche (at) math.uni-hannover.de

Büro: G103, Hauptgebäude (1101)

 

Ich bin Doktorand am Institut für Analysis.

Mein Betreuer ist Prof. Wolfram Bauer.

Publikationen

  • J. F. Brasche, R. Fulsche: Approximation of eigenvalues of Schrödinger operators, Nanosystems: Phys. Chem. Math. 8 (2018), no. 2, 145-161, https://doi.org/10.17586/2220-8054-2018-9-2-145-161
  • R. Fulsche, R. Hagger: Fredholmness of Toeplitz operators on the Fock space, Complex Anal. Oper. Theory 13 (2019), no. 2, 375-403, https://doi.org/10.1007/s11785-018-0803-8
  • R. Fulsche: Toeplitz Operators on Pluriharmonic Function Spaces: Deformation Quantization and Spectral Theory, Integr. Equ. Oper. Theory (2019) 91:40, https://doi.org/10.1007/s00020-019-2538-y
  • W. Bauer, R. Fulsche: Berger-Coburn theorem, localized operators, and the Toeplitz algebra, accepted, arXiv:1905.12246
  • R. Fulsche: Correspondence theory on p-Fock spaces with applications to Toeplitz algebras, J. Funct. Anal. 279 (2020), no. 7, doi.org/10.1016/j.jfa.2020.108661
  • R. Fulsche, M. Nursultanov: Spectral Theory for Sturm-Liouville operators with measure potentials through Otelbaev's function, preprint available at arXiv:2007.01624